Copy Link
Add to Bookmark
Report
Neuron Digest Volume 05 Number 54
Neuron Digest Saturday, 9 Dec 1989 Volume 5 : Issue 54
Today's Topics:
New Book + Bibliography
Send submissions, questions, address maintenance and requests for old issues to
"neuron-request@hplabs.hp.com" or "{any backbone,uunet}!hplabs!neuron-request"
Use "ftp" to get old issues from hplpm.hpl.hp.com (15.255.176.205).
------------------------------------------------------------
Subject: New Book + Bibliography
From: zeiden@ai.cs.wisc.edu (Matthew Zeidenberg)
Date: 06 Dec 89 06:52:50 +0000
[[ Editor's Note: I collated most of the recent requests for information,
refereneces, and bibliographies in the last Digest (#53). The end of this
one may help many of you fill out your own general bibliographies. I'm sure
the readership would appreciate reviews of Zeidenberg's book, when it
appears. Any takers? -PM ]]
My book "Neural Networks in Artificial Intelligence" will be published
shortly by Ellis Horwood Ltd., Chichester UK. I am posting the table of
contents and the bibliography (in refer format).
Chapter 1
Issues in Neural Network Modeling 15
1.1. Introduction 15
1.2. The Statistical Nature of Connectionist Models 17
1.3. Relevance of the Brain 19
1.4. Distributed vs. Local Connectionism 20
1.5. Distributed Models: A Critique 26
1.6. Connectionist Models and the Fuzzy
Propositional Approach 27
1.7. Philosophical Issues 29
1.8. Smolensky's "Proper Treatment" of
Connectionism 29
1.9. Connectionism: A New Form of
Associationism? 35
Chapter 2
Neural Network Methods for Learning and Relaxation 41
2.1. Introduction 41
2.2. Types of Model Neurons 46
2.3. Types of Activation Rules 48
2.4. Early Learning Models 49
2.5. Hebbian and Associative Learning 51
2.6. Kohonen's Work on Associative Learning 54
2.7. Willshaw's Binary Associator 56
2.8. Hopfield's Non-linear Auto-associator 56
2.9. Modeling Neurons with Differential Equations 60
2.10. Simulated Annealing in the Boltzmann
Machine 62
2.11. Learning Weights in the Boltzmann Machine 64
2.12. Error Back-Propagation 67
2.13. Applications of Back-propagation 70
2.14. Learning Family Relationships 71
2.15. Competitive Learning 73
2.16. Competitive Learning using
Feed-forward Networks 73
2.17. Competitive Learning using
Adaptive Resonance Theory 78
2.18. Kohonen's Self-organizing Topological Maps 82
2.19. A Population Biology
Approach to Connectionism 86
2.20. Genetic Algorithms 91
2.21. Reinforcement Algorithms 94
2.22. Temporal Difference Methods 98
2.23. Problem-Solving Using Reinforcement and
Back-propagation
2.24. Problem-Solving Networks 107
2.25. Extensions to Learning Algorithms 111
2.26. Escaping From Local Minima 112
2.27. Creating Bottlenecks 113
2.28. Sequential Learning 115
2.29. Remembering Old Knowledge 117
2.30. Sequential Processing 120
2.31. Image Compression Using a
Back-propagation Auto-associator 122
2.32. Representing Recursive Structures 123
Chapter 3
Production Systems and Expert Systems 127
3.1. Introduction 127
3.2. A Connectionist Production System 128
3.3. Saito and Nakano's Connectionist Expert
System 131
3.4. Gallant's Connectionist Expert System 134
Chapter 4
Knowledge Representation 138
4.1. Introduction 138
4.2. Storing Schemata in Neural Networks 139
4.3. Storing Frames in Neural Networks 140
4.4. Storing Schemata with a
Complex Neural Architecture 144
4.5. Learning Microfeatures for
Knowledge Representation 148
4.6. Implementing Evidential Reasoning
and Inheritance Hierarchies 151
Chapter 5
Speech Recognition and Synthesis 157
5.1. Introduction 157
5.2. Comparing Algorithms for Speech
Recognition 158
5.3. Speech Recognition as Sequence Comparison 160
5.4. The Temporal Flow Model 163
5.5. The TRACE model 165
5.6. A Model of the Print-to-speech
Transformation Process 168
5.7. NETtalk: Reading Aloud with
a Three-Layer Perceptron 172
Chapter 6
Visual Perception and Pattern Recognition 177
6.1. Introduction 177
6.2. Interpreting Origami Figures 178
6.3. Recognition Cones 183
6.4. Separating Figure from Ground 185
6.5. Determining "What" and "Where"
in a Visual Scene 188
6.6. Linking Visual and Verbal Semantics 192
6.7. Recognizing Image-schemas 193
Chapter 7
Language Understanding 195
7.1. Introduction 195
7.2. Processing Finite State Grammars
Sequentially 200
7.3. Sentence Interpretation 205
7.4. Word Sense Disambiguation 210
7.5. Making Case Role Assignments 212
7.6. The MPNP Parsing System 215
7.7. Parsing Strings from Context-Free Grammars 218
7.8. PARSNIP: A Parsing System
Based on Back-propagation 221
7.9. A Quasi-Context-Free Parsing System 223
7.10. Parsing Using a Boltzmann Machine 225
7.11. Learning the Past Tense 227
7.12. A Critique of "Learning the Past Tense" 230
7.13. Letter and Word Recognition 232
%A Jr. A. J. Fenanzo
%D 1986
%T Darwinian Evolution as a Paradigm for AI Research
%S SIGART Newsletter
%P 22
%A Y. Abu-Mostafa
%D 1987
%T Connectivity and Entropy
%S Advances in Neural Information Processing systems
%I Morgan Kaufmann
%C San Mateo, California
%A D.H. Ackley
%A G. E. Hinton
%A T.J Sejnowksi
%D 1985
%T A Learning Algorithm for Boltzmann Machines.
%V 9
%P 147-169
%A David Ackley
%D 1987
%T A Connectionist Machine for Genetic Hillclimbing
%I Kluwer Academic Publishers
%A D.H. Ackley
%D 1987
%T Stochastic Iterated Genetic Hill-climbing
%I Carnegie-Mellon, Pittsburgh, PA
%A R. B. Allen
%D 1988
%T Sequential connectionist networks for answering simple questions about a microworld
%S Proceedings of the Cognitive Science Society
%P 489-495
%A F. J. Almeida
%D 1988
%T Dynamics and architecture for neural computation
%J Journal of Complexity
%V 4
%P 216-245
%A J. Alspector
%A R.B. Allen
%D 1987
%T A Neuromorphic VLSI Learning System
%B Advanced Research in VLSI: Proceedings of the 1987 Stanford Conference
%E P. Loseleben
%I MIT Press
%C Cambridge, Mass.
%A S. Amari
%D 1967
%T A Theory of Adaptive Pattern Classification
%V EC-16
%A S-I. Amari
%D 1977
%T A mathematical approach to neural systems.
%B Systems Neuroscience
%E J. E. Metzler
%I Academic
%C New York
%P 67-117
%A S-I. Amari
%D 1977
%T Neural theory of association and concept-formation
%V 6
%P 175-187
%A S. Amari
%D 1983
%T Field Theory of Self-Organizing Neural Nets
%V SMC-13
%A J. A. Anderson
%D 1977
%T Neural models with cognitive implications.
%B Basic processes in reading perception and comprehension
%E D. LaBerge and S. J. Sanuels
%I Erlbaum
%C Hillsdale, NJ
%P 27-90
%A J. A. and Mozer Anderson M. C.-236.
%D 1981
%T Categorization and selective neurons
%B Parallel Models of Association Memory
%E G. E. Hinton and J. A. Anderson
%I Erlbaum
%C Hillsdale, N. J
%A J.A. Anderson
%D 1983
%T Cognitive and Psychological Computation with Neural Models
%V 13
%P 799-815
%A D.Z. Anderson
%D 1986
%T Coherent Optical Eigenstate Memory
%V 11
%P 56-58
%A Charles Anderson
%D 1986
%T Learning and Problem Solving with Multilayer Connectionist Systems
%I University of Massachusetts
%A Y. Anzai
%A H.A. Simon
%D 1979
%T The Theory of Learning by Doing
%V 86
%A Michael A. Arbib
%A Allen R. Hanson
%D 1987
%T Vision, brain, and cooperative computation .
%I MIT Press
%C Cambridge, Mass.
%A T. Ash
%D 1989
%T Dynamic Node Creation in Connectionist Networks
%I Cognitive Science Institute, University of California, San Diego
%A Robert Axelrod
%D 1987
%T The Evolution of Strategies in the Iterated Prisoner's Dilemma
%B Genetic Algorithms and Simulated Annealing
%E L. Davis
%I Pitman: London
%A L.R. Bahl
%A F. Jelinek
%A R.L. Mercer
%D 1983
%T A Maximum Likelihood Approach to Continuous Speech Recognition
%V PAMI-5
%P 179-190
%A D.H. Ballard
%A G.E. Hinton
%A T.J. Sejnowski
%D 1983
%T Parallel visual computation
%V 306
%P 21-26
%A D. H. Ballard
%D 1984
%T Parameter nets
%V 22
%P 235-267
%A D. H. Ballard
%D 1986
%T Cortical connections and parallel processing: Structure and function
%V 9
%P 67- 120
%A Dana H. Ballard
%D 1988
%T Modular Learning in Neural Networks
%I Department of Computer Science, University of Rochester
%A H.B. Barlow
%D 1972
%T Single Units and Sensation: a neuron doctrine for perceptual psychology?
%V 1
%A John Barnden
%D 1986
%T Complex Cognitive Information-Processing: A Computational Architecture with a Connectionist Implementation
%I Computer Science
Department,Indiana University, Bloomington, IN 47405--4101
%A A. G. Barto
%A P. Anandan
%D 1985
%T Pattern Recognizing Stochastic Learning Automata
%V 15
%P 360-375
%A A. G. Barto
%D 1987
%T An approach to learning control surfaces by connectionist systems.
%B Vision, brain, and cooperative computation .
%E M. A. Arbib and A. R. Hanson
%I MIT Press
%C Cambridge, Mass.
%P 501-522.
%A Jon Barwise
%A John Perry
%D 1983
%T Situations and Attitudes
%I MIT Press
%C Cambridge MA
%A T. J. A. Bennett
%D 1988
%T Self-Organizing Systems and Transformational-Generative (TG) Grammar
%J Cybernetics and Systems: An International Journal
%V 19
%P 61-81
%A Aviv Bergman
%A Michel Kerszberg
%D 1987
%T Breeding Intelligent Automata
%B Proceeding of the IEEE First Annual Conference on Neural Networks
%C San Diego
%A E.L. Bienenstock
%A L.N. Cooper
%A P.W. Munro
%D 1982
%T Theory for the Development of Neuron Selectivity; Orientation Specificity and Binocular Interaction in Visual Cortex
%V 2
%A Lawrence A. Bookman
%D 1988
%T A Connectionist Scheme for Modelling Context
%S 1988 Connectionist Models Summer School
%E G. E. Hinton, T. J. Sejnowski and D. S. Touretzky
%I Morgan Kaufmann
%C San Mateo, CA
%A H. Bourlard
%A C. J. Wellekens
%T Links between Markov models and multi-layer Perceptrons
%A R.M. Brady
%D 1985
%T Optimization Strategies Gleaned from Biological Evolution
%V 317
%P 804-806
%A P. J. Burt
%D 1984
%T The Pyramid as a Structure for Efficient Computation
%B Multiresolution Image Processing and Analysis
%E A. Rosenfeld
%I Springer-Verlag
%C Berlin
%A P. A. Cariani
%T Structural Preconditions for Open-Ended Learning through Machine Evolution
%I Department of System Science, Watson School of Engineering, Applied Sciences, and Technology, State University of New York at Big
hamton, NY, 13901
%A G. A. Carpenter
%A S. Grossberg
%D 1987
%T A Massively Parallel Architecture for a Self-organizing Neural Pattern Recognition Machine
%V 37
%P 54-115
%A Gail A. Carpenter
%A Stephen Grossberg
%D 1987
%T ART 2: Self-organization of stable
category recognition codes for analog input patterns
%V 26
%A John L. Casti
%A Anders Karlqvist
%D 1986
%T Complexity, Language, and Life: Mathematical Approaches
%I Springer-Verlag
%A Eugene Charniak
%A Eugene Santos
%D 1987
%T A Connectionist Context-Free Parser Which is not Context-Free, But Then It is not Really Connectionist Either
%S Ninth Annual Conference of the Cognitive Science Society
%I Erlbaum
%C Seattle, WA
%P 70-77
%A Noam Chomsky
%D 1959
%T Review of Skinner's Verbal Behavior
%V 35
%P 26-58
%A Noam Chomsky
%D 1980
%T Rules and Representations
%I Columbia University Press
%C New York
%A M.B. Clowes
%D 1971
%T On Seeing Things
%V 2
%P 79-116
%A Paul R. Cohen
%A Edward A. Feigenbaum
%D 1982
%T The Handbook of Artificial Intelligence
%I William Kaufmann, Inc.
%C Los Altos, CA
%A M.S. Cohen
%D 1986
%T Design of A New Medium for Volume Holographic Information Processing
%V 14
%P 2288-94
%A J. P. Cohoon
%A S. U. Hegde
%A W. N. Martin
%A D. Richards
%D 1986
%T Punctuated Equilibria: A Parallel Genetic Algorithm
%B Proceeding of the 1986 International Conference on Genetic Algorithms and Their Applications
%P 148-154
%A J. P. Cohoon
%A S. U. Hegde
%A W. N. Martin
%A D. Richards
%D 1988
%T Floorplan Design using Distributed Genetic Algorithms
%B to appear in 1988 IEEE International Conference on Computer-Aided Design
%A L.N. Cooper
%A F. Liberman
%A E. Oja
%D 1979
%T A Theory for the Acquistion and Loss of Neuron Specificity in Visual Cortex
%V 33
%A G.W. Cottrell
%A S.L Small
%D 1983
%T A Connectionist Scheme for Modelling Word Sense Disambiguation
%V 6
%P 89-120
%A G.W. Cottrell
%D 1985
%T Connectionist Parsing
%B Proceedings of the Seventh Annual Conference of the Cognitive Science Society
%I Erlbaum
%C Hillsdale, NJ
%A Gary Cottrell
%D 1986
%T Connectionist Approaches to Natural Language Processing
%S Fall Joint Computer Conference, November 2-6, 1986.
%C Dallas
%A G.W. Cottrell
%A P. Munro
%A D. Zipser
%D 1987
%T Learning Internal Representations from Gray-Scale Images: An example of extensional programming
%S Ninth Annual Conference of the Cognitive Science Society
%I Erlbaum
%C Seattle, WA
%P 461-473
%A Jack D. Cowan
%A David H. Sharp
%D 1988
%T Neural Nets and Artificial Intelligence
%B The Artificial Intelligence Debate: false starts, real foundations
%E S. R. Graubard
%I MIT Press
%C Cambridge, Mass.
%A F. H. C. Crick
%A C. Asanuma
%D 1986
%T Certain aspects of the anatomy and physiology of the cerebral cortex
%B Parallel Distributed Processing, vol. 2: Psychological and Biological Models
%I The MIT Press
%C Cambridge, Massachusetts
%A L. Davis
%D 1987
%T Genetic Algorithms and Simulated Annealing
%I Pitman: London
%A G. S. Dell
%D 1985
%T Positive feedback in hierarchical connectionist models: applications to language production
%V 9
%P 3-23
%A M.A. Derthick
%D 1987
%T Factual and Counterfactual Reasoning by Constructing Plausible Models
%S Conference of the American Association for Artificial Intelligence (AAAI)
%C Seattle WA
%A A. K. Dewdney
%D 1985
%T Computer Recreations: Exploring the field of genetic algorithms in a primordial computer sea full of flibs
%P 21-32
%A E. A. DeYoe
%A D. C. Van\0Essen
%D 1988
%T Concurrent processing streams in monkey visual cortex
%J Trends in Neuroscience
%V 11-5
%P 219-226
%A J. Dieterich
%D 1988
%T Knowledge-intensive Recruitment Learning
%I International Computer Science Institute, Berkeley
%A G.R. Doddington
%A T.B. Shalk
%D 1981
%T Speech Recognition: Turning Theory into Practice
%P 26-32
%A C.P. Dolan
%A M.G. Dyer
%D 1987
%T Symbolic Schemata, Role Binding, and the Evolution of Structure in Connectionist Memories
%S First International Conference on Neural Networks
%I IEEE
%C San Diego, CA
%V II
%P 287-298
%A W. B. Dress
%D 1987
%T Darwinian Optimization of Synthetic Neural Systems
%B Proceeding of the IEEE First Annual International Conference on Neural Networks
%A W. B. Dress
%A J. R. Knisley
%D 1987
%T A Darwinian Approach to Artificial Neural Systems
%S 1987 IEEE Conference on Systems, Man, and Cybernetics (preprint)
%A R.O. Duda
%A P.E. Hart
%D 1973
%T Pattern Classification and Scene Analysis
%I Wiley
%C New York
%A C.R. Dyer
%D 1982
%T Pyramid Algorithms and Machines
%B Multicomputers and Image Processing
%E K. Preston and L. Uhr
%I Academic Press
%C New York
%A C. R. Dyer
%D 1987
%T Multiscale Image Understanding
%B Parallel Computer Vision
%E L. Uhr
%I Academic Press
%C New York
%A Gerald M. Edelman
%D 1978
%T The Mindful Brain: cortical organization and group-selective theory of higher brain function
%I MIT Press
%C Cambridge, Mass.
%A Gerald M. Edelman
%D 1987
%T Neural Darwinism: the theory of neuronal group selection
%I Basic Books
%C New York
%A J.L. Elman
%D 1988
%T Finding Structure in Time
%I Center for Research in Language, University of California, San Diego
%A J.L Elman
%D 1988
%T Finding Structure in Time
%I Center for Research on Language, University of California, San Diego
%A Elredge
%A Gould
%T Time Frames
%X Theory of punctuated equilibria
%A Scott E. Fahlman
%D 1981
%T Representing Implicit Knowledge
%B Parallel Models of
Associative Memory
%E J. A. Anderson
%I Erlbaum
%C Hillsdale, NJ
%A S. E. Fahlman
%A G. E. Hinton
%A T. J. Sejnowski
%D 1983
%T Massively parallel architectures for AI; NETL, Thistle, and Boltzmann machines
%S Proceedings of the National Conference on Artificial Intelligence AAAI-83
%A M. Fanty
%D 1985
%T Context-Free Parsing in Connectionist Networks
%I Computer Science Department, University of Rochester
%A J. A. Feldman
%A D. H. Ballard
%D 1982
%T Connectionist Models and Their Properties
%V 6
%P 205-264
%A J. A. Feldman
%D 1983
%T A Connectionist Model of Visual Memory
%B Parallel models of associative memory
%E G. E. Hinton and J. A. Anderson
%I Erlbaum
%C Hillsdale, NJ
%P 49-81
%A J.A. Feldman
%D 1985
%T Four Frames Suffice: A provisional model of vision and space
%V 8
%P 265-289
%K vision
%A J.A. Feldman
%D 1986
%T Neural Representation of Conceptual Knowledge
%I Department of Computer Science, University of Rochester
%A R.D. Fennel
%A V.R. Lesser
%D 1977
%T Parallelism in AI Problem-solving: A Case Study of HEARSAY-II
%V C-26
%P 98-111
%A C.J. Fillmore
%D 1968
%T The Case for Case
%B Universals in Linguistic Theory
%E E. Bach and R. T. Harms
%I Holt, Rinehart, and Winston
%C New York
%A Roger Fletcher
%D 1980
%T Practical Methods of Optimization
%I Wiley
%C New York
%V 1
%A Jerry A. Fodor
%D 1981
%T Representations: Philosophical Essays on the Foundations of Cognitive Science
%I MIT Press
%C Cambridge MA
%A Jerry A. Fodor
%A Zenon W. Pylyshyn
%D 1988
%T Connectionism and Cognitive Architecture: a Critical Analysis
%B Connections and Symbols
%E S. Pinker and J. Mehler
%I MIT Press
%C Cambridge, Mass.
%A C.L. Forgy
%D 1981
%T OPS5 User's Manual
%I Carnegie-Mellon University
%A K.I. Forster
%D 1976
%T Accessing the Mental Lexicon
%B New Approaches to Language Mechanism
%E E. C. T. Walker and R. J. Wales
%I North Holland
%C Amsterdam
%A W.N. Francis
%A H. Kucera
%D 1979
%T Manual of Information to Accompany a Standard Corpus of Present-Day American English for Use with Digital Computers
%I Brown University
%A K. Fukushima
%D 1975
%T Cognitron: a self-organizing multilayered neural network
%V 20
%P 121-136
%A K. Fukushima
%D 1980
%T Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
%V 36
%P 193-202
%A K. Fukushima
%D 1984
%T A Hierarchical Neural Network Model for Associative Memory
%P 105-113
%A K. Fukushima
%D 1986
%T A Neural Network Model for Selective Attention in Visual Pattern Recognition
%P 5-15
%A Kunihiko Fukushima
%D 1987
%T A neural network model for selective attention in visual pattern recognition and associative recall
%V 26
%A Stephen I. Gallant
%D 1988
%T Connectionist Expert Systems
%V 31
%P 152-169
%A Howard Gardner
%D 1985
%T The Mind's New Science: a History of the Cognitive Revolution
%I Basic Books
%C New York
%A S. Geman
%A D. Geman
%D 1984
%T Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images
%V PAMI-6
%A A. Gierer
%D 1988
%T Spatial organization and genetic information in brain development
%J Biological Cybernetics
%V 59
%P 13-21
%A Jean-Charles Gille
%A Stefan Wegrzyn
%A Pierre Vidal
%D 1988
%T On some models for developmental systems, Part IX: Generalized generating word and and genetic code
%J Int. J. Systems Sci
%V 19
%P 845-855
%A David Goldberg
%T Genetic Algorithms in Optimization and Machine Learning
%I Addison-Wesley
%A Stephen Jay Gould
%D 1982
%T Darwinism and the Expansion of Evolutionary Theory
%J Science
%V 216
%P 380
%X Talks about issues in biological evolution.
%A Stephen R. Graubard
%D 1988
%T The Artificial Intelligence Debate: false starts, real foundations
%I MIT Press
%C Cambridge, Mass.
%A W.T. Greenough
%A C.H. Bailey
%D 1988
%T The Anatomy of a Memory: Convergence of Results Across a Diversity of Tests
%V 11
%P 142-147
%A John Grefenstette
%D 1985
%T Proceedings of the First International Conference on Genetic Algorithms and Their Applications
%I Lawrence Erlbaum Assoc.
%A John J. Grefenstette
%D 1985
%T Genetic Algorithms and Their Applications: Proceedings of the First International Conference on Genetic Algorithms
%I Lawrence Erlbaum Associates
%A John J. Grefenstette
%D 1986
%T Optimization of Control Parameters for Genetic Algorithms
%V 16
%P 122-128
%A John Grefenstette
%D 1987
%T Genetic Algorithms and Their Applications: Proceedings of the 2nd Intl. Conf. Genetic Algorithms
%I Lawrence Erlbaum Assoc.
%A John J. Grefenstette
%D 1987
%T Genetic Algorithms and Their Applications: Proceedings of the Second International Conference on Genetic Algorithms
%I Lawrence Erlbaum Associates
%C Cambridge, MA
%A C.G. Gross
%A M. Mishkin
%D 1977
%T The neural basis of stimulus equivalence across retinal translation
%B Lateralization in the Nervous System
%E S. Harnad, R. Doty, J. Jaynes, L. Goldstein and G. Krauthamer
%I Academic Press
%C New York
%P 109-122
%K vision
%A S. Grossberg
%D 1976
%T Adaptive Pattern Classification and Universal Recoding I & II
%V 23
%A S. Grossberg
%D 1981
%T Adaptive resonance in development, perception and cognition
%J SIAM-AMS Proceedings
%V 13
%P 107-155
%A P.R. Hanna
%A J.S. Hanna
%A R.E. Hodges
%A E.H. Rudorf
%D 1966
%T PhonemeQGrapheme Correspondences as Cutes to Spelling Improvement
%I U.S. Department of Health, Education, and Welfare
%A S. Hanson
%A J. Kegl
%D 1987
%T PARSNIP: A Connectionist Network that Learns Natural Language from Exposure to Natural Language Sentences
%S Ninth Annual Conference of the Cognitive Science Society
%I Erlbaum
%C Hillsdale, NJ
%A H. M. Hastings
%A S. Waner
%D 1984
%T Principles of evolutionary learning: design for a stochastic neural network
%A Harold M. Hastings
%A Stefan Waner
%D 1986
%T Biologically Motivated Machine Intelligence
%J SIGART Newsletter
%P 29-31
%A D. O. Hebb
%D 1949
%T The Organization of Behavior
%I Wiley
%C New York
%A C. Hewett
%D 1977
%T Viewing Control Structures as Patterns of Passing Messages
%V 8
%A D. Hillis
%D 1985
%T The Connection Machine
%I MIT Press
%C Cambridge, MA
%A G. Hinton
%D 1981
%T A Parallel computation that assigns canonical object-based frames of reference
%K vision
%A G.E. Hinton
%D 1981
%T Implementing Semantic Networks in Parallel Hardware
%B Parallel Models of Associative Memory
%E G. E. Hinton and J. A. Anderson
%I Erlbaum
%C Hillsdale, NJ
%A G.E. Hinton
%D 1981
%T Shape representation in Parallel Systems
%S Seventh International Conference on Artificial Intelligence
%I Erlbaum
%C Vancouver, BC, Canada
%V 2
%A G.E. Hinton
%D 1986
%T Learning Distributed Representations of Concepts
%S Ninth Annual Conference of the Cognitive Science Society
%I Erlbaum
%A Geoffrey E. Hinton
%A Steven J. Nolan
%D 1986
%T
How Learning Can Guide Evolution
%I CMU-CS-86-128
%A G.E. Hinton
%A T.J. Sejnowski
%D 1986
%T Learning and Relearning in Boltzmann Machines
%B Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1: Foundations.
%E D. E. Rumelhart and J. L. McClelland
%I MIT Press
%C Cambridge, Mass.
%A G.E. Hinton
%A J.L. McClelland
%A D.E. Rumelhart
%D 1986
%T Distributed Representations
%B Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1: Foundations.
%E D. E. Rumelhart and J. L. McClelland
%I MIT Press
%C Cambridge, Mass.
%A G. E. Hinton
%D 1987
%T Connectionist learning procedures
%S Technical Report CMU-CS-87-115
%I Computer Science Department, Carnegie Mellon University
%C Pittsburgh, Pennsylvania
%A G. E. Hinton
%D 1987
%T Learning translation invariant recognition in a massively parallel network
%B PARLE: Parallel Architectures and Languages, Europe. Lecture Notes in Computer Science
%E J. H. G. Goos
%I Springer-Verlag
%C Berlin
%A G.E. Hinton
%A D.C Plaut
%D 1987
%T Using Fast Weights to Deblur Old Memories
%S Ninth Annual Conference of the Cognitive Science Society
%I Erlbaum
%C Seattle, WA
%A G.E. Hinton
%D 1987
%T Connectionist Learning Procedures
%V to appear
%A G.E. Hinton
%A J.L. McClelland
%D 1987
%T Learning Representations by Recirculation
%I Carnegie-Mellon University
%A J. Hochberg
%D 1978
%T Perception
%I Prentice Hall
%C Englewood Cliffs, NJ
%A J. H. Holland
%D 1975
%T Adaptation in Natural and Artificial Systems
%I Univ. of Michigan Press
%C Ann Arbor, Mich.
%A John H. Holland
%D 1984
%T Genetic Algorithms and Adaptation
%B Adaptive Control of Ill Defined Systems
%E O. G. S. a. others
%I Plenum Press
%A J. H. Holland
%A K. J. Holyoak
%A R. E. Nisbett
%A P. R. Thagard
%D 1986
%T Induction: Processes of Inference, Learning, and Discovery
%I The MIT Press
%C Cambridge, Massachusetts
%A J. H. Holland
%A Holyoak
%A Nisbett
%A Thagard
%D 1986
%T Induction: Processes of Inference, Learning, and Discovery
%I MIT Press: Cambridge, MA
%A V. Honavar
%A L. Uhr
%D 1987
%T Recognition Cones: A Neuronal Architecture for Perception and Learning
%I University of Wisconsin-Madison, Computer Sciences Dept.
%A V. Honavar
%A L. Uhr
%D 1988
%T A Network of Neuron-like Units that Learns to Perceive by Generation as Well as Reweighting of its Links
%S 1988 Connectionist Models Summer School
%E G. E. Hinton, T. J. Sejnowski and D. S. Touretzky
%I Morgan Kaufmann
%C San Mateo, CA
%A Vasant Honavar
%D 1989
%T Perceptual Development and Learning: from Behavioral, Neurophysiological and Morphological Evidence to Computational Models
%I Computer Sciences Department, University of Wisconsin
%A V. Honavar
%A L. Uhr
%D 1989
%T Experimental Results indicate that Generation, Local Receptive Fields and Global Convergence Improve Perceptual Learning in Conne
ctionist Networks
%S International Joint Conference on Artificial Intelligence
%A Vasant Honavar
%A Leonard Uhr
%D 1989
%T Brain-Structured Connectionist Networks that Perceive and Learn (paper in preparation)
%A J.E. Hopcroft
%A J.D. Ullman
%D 1979
%T Introduction to Automata Theory, Languages, and Computation
%I Addison-Wesley
%C Reading, Mass.
%A J.J. Hopfield
%D 1982
%T Neural Networks and Physical Systems with Emergent Collective Computational Abilities
%V 79
%P 2554-2558
%A J.J. Hopfield
%A D. Tank
%D 1985
%T "Neural" Computation of Decisions in Optimization Problems
%V 52
%A J.J. Hopfield
%A D.W. Tank
%D 1986
%T Computing with Neural Circuits: A Model
%V 233
%P 625-633
%A J.J. Hopfield
%A D.W. Tank
%D 1986
%B Disordered Systems and Biological Organization
%I Springer-Verlag
%C Berlin
%A J.J. Hopfield
%A D.W. Tank
%D 1987
%S IEEE First International Conference on Neural Networks
%I IEEE
%C San Diego, CA
%A D. H. Hubel
%D 1982
%T Explorations of the primary visual cortex, 1955-1978
%J Nature
%V 299
%P 515-524
%A D.A. Huffman
%D 1971
%T Impossible Objects as Nonsense Sentences
%B Machine Intelligence 8
%E E. W. Elcock and D. Michie
%I Edinburgh University Press
%C Edinburgh
%P 493-509
%A R.A. Hummel
%A S.W. Zucker
%D 1983
%T On the Foundations of Relaxation Labeling Processes
%V PAMI-5
%A Ray Jackendoff
%D 1983
%T Semantics and Cognition
%I MIT Press
%C Cambridge MA
%A R. Colin Johnson
%D 1988
%T Avoiding the AI Trap: Synthetic Intelligence
%A Kenneth De Jong
%D 1987
%T On Using Genetic Algorithms to Search Program Spaces
%B Genetic Algorithms and Their Applications: Proceeding of the Second International Conference on Genetic Algorithms
%E J. J. Grefenstette
%I Lawrence Erlbaum Associates
%A M.I. Jordan
%D 1986
%T Attractor Dynamics and Parallelism in a Connectionist Sequential Machine
%S Proceedings of the Eighth Annual Conference of the Cognitive Science Society
%I Erlbaum
%A M.I. Jordan
%D 1986
%T Serial Order: A Parallel, Distributed Processing Approach
%I University of California, San Diego. Institute for Cognitive Science
%A M. I. Jordan
%D 1989
%T Supervised learning and systems with excess degrees of freedom
%B Proceedings of the 1988 Connectionist Models Summer School
%E G. H. a. T. S. D. Touretzky
%I Morgan Kaufmann
%C San Mateo, CA
%A T. Kanade
%D 1980
%T A Theory of Origami World
%V 13
%P 279-311
%A R.L. Kasyap
%A C.C. Blaydon
%A K.S. Fu
%D 1970
%T Stochastic Approximation
%B Adaptation, Learning, and Pattern Recognition Systems: theory and applications
%E K. S. Fu and J. M. Mendel
%I Academic
%C New York
%A M. Kay
%D 1973
%T The MIND System
%B Natural Language Processing
%E R. Rustin
%I Algorithmics Press
%C New York
%A Michel Kerszberg
%T Genetic and Epigenetic Factors in Neural Circuit Wiring (preliminary)
%I Institut fur Festkorperforschung der
%A Michel Kerszberg
%A Aviv Bergman
%D 1986
%T The Evolution of Data Processing Abilities in Competing Automata
%S Computer Simulation in Brain Science, Copenhagen, Denmark
%A Michel Kerszberg
%D 1988
%T Genetics and epigenetics of neural wiring
%B Snowbird 1988
%A Paul K. Kienker
%A Terrence J. Sejnowski
%A Geoffrey E. Hinton
%A Lee E. Schumacher
%D 1986
%T Separating Figure from Ground with a Parallel Network
%V 15
%P 197-216
%A S. Kirkpatrick
%A C.D. Gelatt
%A M.P. Vecchi
%D 1983
%T Optimization by Simulated Annealing
%V 220
%P 671-680
%A S. C. Kleene
%D 1956
%T Representation of events in nerve nets and finite automata
%B Automata Studies
%E C. E. S. a. J. McCarthy
%I Princeton University Press
%C Princeton, NJ
%A A. Knapp
%A J.A. Anderson
%D 1984
%T Theory of Categorization based on Distributed Memory Storage
%V 10
%A Teuvo Kohonen
%D 1988
%T Self-Organization and Assocative Memory
%I Springer-Verlag
%C Berlin
%A J. K. Kruschke
%T Creating local and distributed bottlenecks in hidden layers of back-propagation networks
%S Proceedings of the 1988 Connectionist Models Summer School
%E G. E. Hinton, T. J. Sejnowski and D. S. Touretzky
%I Morgan Kaufmann
%C San Mateo, CA
%A John K. Kruschke
%D 1988
%T Creating Local and Distributed Bottlenecks in Hidden Layers of Back-Propagation Networks
%S 1988 Connectionist Summer School
%I Morgan Kaufmann
%C Carnegie-Mellon University, Pittsburgh PA
%A S. W. Kuffler
%A J. G. Nicholls
%A A. R. Martin
%D 1984
%T From Neuron To Brain
%I Sinauer Associates Inc.
%C Sunderland, Massachusetts
%A George Lakoff
%D 1987
%T Women, Fire, and Dangerous Things
%I University of Chicago Press
%C Chicago
%A George Lakoff
%D 1988
%T A Suggestion for a Linguistics with Connectionist Foundations
%S 1988 Connectionist Models Summer School
%E G. E. Hinton, T. J. Sejnowski and D. S. Touretzky
%I Morgan Kaufmann
%C San Mateo, CA
%A Kevin Lang
%D 1987
%T Connectionist Speech Recognition
%C Thesis Proposal, Carnegie-Mellon University
%A Ronald Langacker
%D 1987
%T Foundations of Cognitive Grammar
%I Stanford University Press
%C Stanford
%A P. Langley
%D 1985
%T Learning to Search: from Weak Methods to Domain-specific Heuristics
%V 9
%P 217-260
%A Y. Le Cun
%D 1987
%T Modles Connexionnistes le l'Apprentissage
%I Universit Pierre et Marie Curie, Paris
%A S.R. Lehky
%A T.J. Sejnowski
%D 1988
%T Neural network model for the cortical represenation of surface curvature from images of shaded surfaces
%B Sensory Processing in the Mammalian Brain
%E J. S. Lund
%I Oxford University Press
%C Oxford
%A Z. N. Li
%A L. Uhr
%D 1987
%T Pyramid vision using key features to integrate image-driven bottom-up and model-driven top-down processes
%J Systems, Man and Cybernetics
%V 17
%P 250-263
%A T. Li
%A H.W. Chun
%D 1987
%T A Massively Parallel Network-based Natural Language Parsing System
%S The Second International Conference on Computers and Applications
%A R. Linsker
%D 1986
%T From Basic Network Principles to Neural Architecture: Emergence of Orientation-selection Cells
%V 83
%P 8390-8394
%A R. Linsker
%D 1986
%T From Basic Network Principles to Neural Architecture: Emergence of Orientation Columns
%V 83
%P 8779-8783
%A R. Linsker
%D 1986
%T From Basic Network Principles to Neural Architecture: Emergence of Spatial Opponent Cells
%V 83
%A R. Linsker
%D 1987
%T Development of Feature-analyzing Cells and Their Columnar Organization in a Layered Self-adaptive Network
%B Computer Simulation in Brain Science
%E R. Cotterill
%I Cambridge University Press
%A R. Linsker
%D 1988
%T Self-Organization in a Perceptual Network
%P 105-117
%A Richard P. Lippmann
%A Ben Gold
%D 1987
%T Neural-Net Classifiers Useful for Speech Recognition
%S First International Conference on Neural Networks
%A R.P. Lippmann
%D 1987
%T An Introduction to Computing with Neural Nets
%V 4
%P 4ff
%A M. Livingstone
%A D. Hubel
%D 1988
%T Segregation of form, color, movement, and depth: anatomy, physiology, and perception
%J Science
%V 240
%P 740-749
%A A.K. Mackworth
%D 1977
%T Consistancy in Networks of Relations
%V 8
%A D. Marr
%D 1978
%T Representing Visual Information
%B Computer Vision Systems
%E A. R. Hanson and E. M. Riseman
%I Academic Press
%C New York
%P 61-80
%A D. Marr
%D 1982
%T Vision
%I W. H. Freeman and Co.
%C New York, NY
%A J.L. McClelland
%D 1976
%T Preliminary letter identification in the perception of words and nonwords
%V 4
%P 80-91
%A J.L. McClelland
%A D.E. Rumelhart
%D 1985
%T An Interactive Activation Model of Context Effects in Letter Perception: Part 1
%V 88
%P 375-407
%A J.L McClelland
%D 1985
%T Putting Knowledge in its Place: A Scheme for Programming Parallel Processing Structures on the Fly
%V 9
%P 113-146
%A J.L. McClelland
%A A.H. Kawamoto
%D 1986
%T Mechanisms of Sentence Processing: Assigning Roles to Constituents of Sentences
%B Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1: Foundations.
%E D. E. Rumelhart and J. L. McClelland
%I MIT Press
%C Cambridge, Mass.
%A J.L. McClelland
%A J.L. Elman
%D 1986
%T Interactive Processes in Speech Perception: The TRACE model
%B Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1: Foundations.
%E D. E. Rumelhart and J. L. McClelland
%I MIT Press
%C Cambridge, Mass.
%A J.L. McClelland
%A D.E. Rumelhart
%D 1988
%T Explorations in Parallel Distributed Processing: A Handbook of Models, Programs, and Exercises
%I MIT Press
%C Cambridge, Mass.
%A Michael McCloskey
%A Neal J. Cohen
%D 1987
%T The Sequential Learning Problem in Connectionist Model: Paper read at the meetings of the Psychonomic Society, Washington, Novemb
er
%A W. S. McCulloch
%A W. H. Pitts
%D 1943
%T A Logical Calculus of the Ideas Immanent in Nervous Activity
%V 5
%P 115-133
%A N. Metropolis
%A A. Rosenbluth
%A M. Rosenbluth
%A A. Teller
%A E. Teller
%T Equation of State Calculations for Fast Computing Machines
%V 6
%P 1087ff.
%A R. S. Michalski
%A J. G. Carbonell
%A T. M. Mitchell (eds.)
%D 1983
%T Machine Learning - An Artificial Intelligence Approach, vol. 1
%I Tioga
%C Palo Alto, California
%A Risto Mikkulainen
%A Michael Dyer
%D 1988
%T Encoding Input/Output Representations in Connectionist Cognitive Systems
%S 1988 Connectionist Models Summer School
%I Morgan Kaufmann
%C Carnegie-Mellon University
%A M. Minsky
%A S. Papert
%D 1969
%T Perceptrons: An Introduction to Computational Geometry
%I The MIT Press
%C Cambridge, Massachusetts
%A Marvin Minsky
%D 1975
%T A Framework for Representing Knowledge
%B The Psychology of Computer Vision
%E P. Winston
%I McGraw-Hill
%C New York
%A M.L. Minsky
%D 1977
%T Plain Talk about Neurodevelopmental Epistemology
%S 5th International Joint Conference on Artificial Intelligence
%V 2
%P 1083-1092
%A Eric Mjolsness
%A Gene Gindi
%A Tony Zador
%A P. Anandan
%T Objective Functions for Visual Recognition: A Neural Network that Incorporates Inheritance and Abstraction
%B Snowbird 1988
%A Eric Mjolsness
%A David H. Sharp
%A Bradley K. Alpert
%T Genetic Parsimony in Neural Nets
%B Snowbird 1988
%A E. Mjolsness
%A D. H. Sharp
%D 1986
%T A preliminary analysis of recursively generated networks
%S Proc. American Institute of Physics (Special Issue on Neural Nets)
%A Eric Mjolsness
%A David N. Sharp
%D 1986
%T A Preliminary Analysis of Recursively Generated Networks
%S AIP Conference on Neural Networks for Computing
%E J. S. Denker
%A Eric Mjolsness
%A David H. Sharp
%A Bradley K. Alpert
%D 1988
%T Scaling, Machine Learning, and Genetic Neural Nets
%I YALEU/DCS/TR-613, Yale
LA-UR-88-142, Los Alamos
%A B. Moore
%D 1989
%T ART 1 and Pattern Clustering
%B Proceedings of the 1988 Connectionist Models Summer School
%E G. H. a. T. S. D. Touretzky
%I Morgan Kaufmann
%C San Mateo, CA
%A H. Muhlenbein
%A M. Gorges-Schleuter
%A O. Kramer
%D 1988
%T Evolution algorithms in combinatorial optimization
%J Parallel Computing
%V 7
%P 65-85
%A Kumpati S. Narendra
%A M.A.L. Thathachar
%D 1974
%T Learning AutomataQA Survey
%V 4
%P 323-334
%A A. Newell
%D 1980
%T Physical Symbol Systems
%V 4
%P 135-183
%A G.C. Oden
%A J.G. Rueckl
%D 1986
%T Taking Language by the Hand: Reading Handwritten Words
%S Paper presented at the Twenty-seventh Annual Meeting of the Psychonomics Society
%C New Orleans, LA
%A G.C. Oden
%D 1988
%T Fuzzy Prop: A Symbolic Superstrate for Connectionist Models
%S Second IEEE International Conference on Neural Networks
%C San Diego, CA
%A Gregg C. Oden
%D 1988
%T Why the Difference Between Connectionism and Anything Else is More Than You Might Think but Less Than You Might Hope
%I University of Wisconsin, Dept. of Psychology.
%A D.B. Parker
%D 1985
%T Learning-logic
%I Sloan School of Management, MIT
%A D.B. Parker
%D 1987
%T Second order Back-propagation: An Optimal Adaptive Algorithm for any Adaptive Network
%I Unpublished Manuscript
%A Ramesh S. Patil
%D 1987
%T A Case Study on Evolution of System Building Expertise: Medical Diagnosis
%B AI in the 1980s and Beyond
%E W. E. L. Grimson and R. S. Patil
%I MIT Press
%C Cambridge MA
%A J. C. Pearson
%A L. H. Finkel
%A G. E. Edelman
%D 1987
%T Plasticity in the organization of adult cerebral cortical maps: a computer simulation based on neuronal group selection
%J Journal of Neuroscience
%V 7
%P 4209-4223
%A D. I. Perret
%A A. J. Mistlin
%A A. J. Chitty
%D 1987
%T Visual neurones responsive to faces
%J Trends in Neuroscience
%V 10-9
%A A. Peters
%A E. G. Jones (eds.)
%D 1986
%T Cerebral Cortex: Vol. 3. Visual Cortex
%I Plenum
%C New York
%A F. J. Pineda
%D 1987
%T Generalization of back-propagation to recurrent neural networks
%J Physics Review Letters
%V 59
%P 2229-2232
%A Steven Pinker
%D 1984
%T Language Learnability and Language Development
%I Harvard University Press
%C Cambridge, MA
%A Steven Pinker
%A Alan Prince
%D 1988
%T On Language and Connectionism: Analysis of a Parallel Distributed Processing Model of Language Acquisition
%B Connections and Symbols
%E S. Pinker and J. Mehler
%I MIT Press
%C Cambridge, Mass.
%A Steven Pinker
%A Jacques Mehler
%D 1988
%T Connections and Symbols
%I MIT Press
%C Cambridge, Mass.
%A D.C. Plaut
%A G.E. Hinton
%D 1987
%T Learning Sets of Filters using Back-propagation
%V 2
%A M. D. Plumbley
%A F. Fallside
%D 1989
%T An information-theoretic approach to unsupervised connectionist models
%B Proceedings of the 1988 Connectionist Models Summer School
%E G. H. a. T. S. D. Touretzky
%I Morgan Kaufmann
%C San Mateo, CA
%A J. Pollack
%D 1988
%T Recursive Auto-Associative Memory: devising Computational Distributed Representations
%I Computing Reseach Laboratory, New Mexico State University
%A M.I. Posner
%A S.W. Keele
%D 1968
%T On the Genesis of Abstact Ideas
%V 83
%P 353-363
%A M.I. Posner
%A S.W. Keele
%D 1968
%T Retention of Abstact Ideas
%V 83
%P 304-308
%A M.I. Posner
%D 1973
%T Cognition: An introduction
%I Scott, Foresman
%C Glenview, IL
%A K. Pribram
%D 1971
%T Languages of the Brain
%I Prentice-Hall
%C Englewood Cliffs, NJ
%A Zenon W. Pylyshyn
%D 1984
%T Computation and Cognition: Toward a Foundation for Cognitive Science
%I MIT Press
%C Cambridge MA
%A N. Qian
%A T. J. Sejnowski
%D 1988
%T Learning to solve random-dot stereograms of dense and transparent surfaces with recurrent backpropagation
%B Proceedings of the 1988 Connectionist Models Summer School
%E T. J. S. a. D. S. T. G. E. Hinton
%I Morgan Kaufmann
%C San Mateo, CA
%A L.R. Rabiner
%A B.H. Juang
%D 1986
%T An Introduction to Hidden Markov Models
%V 3
%A B. Randell
%A P.A. Lee
%A P.C. Treleaven
%D 1978
%T Reliability Issues in Computer System Design
%V 10
%P 123-165
%A A.S. Reber
%D 1967
%T Implicit Learning of Artifical Grammars
%V 5
%P 855-863
%A G.N. Reeke
%A G.M. Edelman
%D 1988
%T Real Brains and Artificial Intelligence
%B The Artificial Intelligence Debate: False Starts, Real Foundations
%E S. R. Graubard
%I MIT Press
%C Cambridge, Mass.
%A James A. Reggia
%A Patricia M. Marsland
%A Rita Sloan Berndt
%D 1988
%T Competitive Dynamics in a Dual-route Connectionist Model of Print-to-sound Transformation
%V 2
%P 509-547
%A Terry Regier
%D 1988
%T Recognizing Image-Schemas Using Programmable Networks
%S 1988 Connectionist Models Summer School
%E G. E. Hinton, T. J. Sejnowski and D. S. Touretzky
%I Morgan Kaufmann
%C San Mateo, CA
%A Gerard Rinkus
%T Learning as Natural Selection in a Sensori-Motor Being
%I Dept. of Math & Computer Science, Adelphi University
%A Rod Rinkus
%D 1986
%T Learning and Pattern Recognition in Sensori-Motor Beings
%I unpublished masters thesis, Hofstra University
%A George G. Robertson
%D 1987
%T Parallel Implementations of Genetic Algorithms in a Classifier System
%S Genetic Algorithms and Their Applications: Proceedings of the Second International Conference on Genetic Algorithms
%E J. J. Grefenstette
%A Charles R. Rosenberg
%D 1987
%T Revealing the Structure of NETtalk's Internal Representations
%S Ninth Annual Conference of the Cognitive Science Society
%I Erlbaum
%C Seattle, WA
%P 537-554
%A Frank Rosenblatt
%D 1961
%T Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms
%I Spartan Books
%C Washington DC
%A P.S. Rosenbloom
%A A. Newell
%D 1986
%T The Chunking of Goal Hierarchies: A Generalized Model of Practice
%B Machine Learning: An Artificial Intelligence Approach, Vol. II
%E R. S. Michalski, J. G. Carbonell and T. M. Mitchell
%I Morgan Kaufmann
%C Los Altos, CA
%A A. Rosenfeld
%A R. A. Hummel
%A S. W. Zucker
%D 1976
%T Scene labeling by relaxation operations
%J IEEE Transactions on Systems, Man, and Cybernetics
%V 6
%P 430-440
%A A. Rosenfeld
%A A.C. Kak
%D 1976
%T Digital Picture Processing
%I Academic Press
%C New York
%A A. Rosenfeld
%D 1983
%T Pyramids: multiresolution image analysis
%S Proceedings of the Third Scandinavian Conference on Image Analysis
%P 23-28
%A Ronald Rosenfeld
%A David Touretzky
%D 1988
%T Coarse-Coded Symbol Memories and their Properties
%A Ronald Rosenfeld
%A David S. Touretzky
%D 1988
%T A Survey of Coarse-Coded Symbol Memories
%S 1988 Connectionist Models Summer School
%I Morgan Kaufmann
%C Carnegie-Mellon University
%A Jay G. Rueckl
%D 1986
%T A Distributed Connectionist Model of Letter and Word Identification
%I University of Wisconsin
%A Jay G. Rueckl
%A Kyle R. Cave
%A Stephen M. Kosslyn
%D 1988
%T Why are "What" and "Where" Processed by Separate Cortical Visual Systems? A Computational Investigation
%V in press
%A David Rumelhart
%A David Zipser
%D 1985
%T Feature Discovery by Competitive Learning
%V 9
%P 75-112
%A D. E. Rumelhart
%A G. E. Hinton
%A J. L. McClelland
%D 1986
%T A general framework for parallel distributed processing
%B Parallel Distributed Processing: Explorations in the microstructure of cognition; vol. 1: Foundations
%E D. Rumelhart and J. McClelland
%I The MIT Press
%C Cambridge, Massachusetts
%A D. E. Rumelhart
%A G. E. Hinton
%A R. J. Williams
%D 1986
%T Learning Internal Representations by Error Propagation
%B Parallel Distributed Processing: explorations in the microstructure of cognition; vol. 1: Foundations
%E D. E. Rumelhart and J. L. McClelland
%I The MIT Press
%C Cambridge, Massachusetts
%A D.E. Rumelhart
%A P. Smolensky
%A J.L. McClelland
%A G.E. Hinton
%D 1986
%T Schemata and Sequential Thought Processes in PDP Models
%B Parallel Distributed Processing: Explorations in the microstructure of cognition; vol. 2: Psychological and Biological Models
%E J. L. McClelland and D. E. Rumelhart
%I MIT Press
%C Cambridge, Mass.
%A David Rumelhart
%A James McClelland
%D 1986
%T Parallel Distributed Processing: Explorations in the Microstructure of Cognition; Vol. 1: Foundations: Vol. 2: Psychological and
Biological Models
%I MIT Press
%C Cambridge, Mass.
%A David Rumelhart
%A James McClelland
%D 1986
%T On Learning the Past Tenses of English Verbs
%B Parallel Distributed Processing: Explorations in the Microstructure of Cognition; Vol. 2: Psychological and Biological Models
%E J. McClelland and D. Rumelhart
%I MIT Press
%C Cambridge, Mass.
%A D.E. Rumelhart
%A J.L. McClelland
%D 1986
%T PDP Models and General Issues in Cognitive Science
%B Parallel Distributed Processing; Vol. 1: Foundations
%E D. E. Rumelhart and J. L. McClelland
%I MIT Press
%C Cambridge, Mass.
%A D. E. Rumelhart
%A G. E. Hinton
%A R. J. Williams
%D 1986
%T Learning Internal Representations by Back-propagating Errors
%V 323
%A D. Sabbah
%D 1985
%T Computing with Connections in Visual Recognition of Origami Objects
%V 9
%P 25-50
%A Kazumi Saito
%A Ryohei Nakano
%D 1988
%T Medical Diagnostic Expert System Based on PDP model
%S IEEE International Conference on Neural Networks
%C San Diego
%A Samkoof
%A Kruskal
%D 1983
%A A.L Samuel
%D 1963
%T Some Studies in Machine Learning Using the Game of Checkers
%B Computers and Thought
%E E. A. Feigenbaum and J. Feldman
%I McGraw-Hill
%C New York
%A Peter A. Sandon
%A Leonard M. Uhr
%D 1988
%T A Local Interaction Heuristic for Adaptive Networks
%S IEEE International Conference on Neural Networks
%I IEEE
%C San Diego
%A R.C. Schank
%A R.P. Abelson
%D 1977
%T Scripts, Plans, Goals, and Understanding
%I Erlbaum
%C Hillsdale, NJ
%A Jacob T. Schwartz
%D 1988
%T The New Connectionism: Developing relationships between Neuroscience and Artificial Intelligence
%B The Artificial Intelligence Debate: False starts, real foundations
%E S. R. Graubard
%I MIT Press
%C Cambridge, Mass.
%A T. J. Sejnowski
%D 1986
%T Open questions about computation in cerebral cortex
%B Parallel Distributed Processing, vol. 2: Psychological and Biological Models
%I The MIT Press
%C Cambridge, Massachusetts
%A T.J. Sejnowski
%A C. Rosenberg
%D 1986
%T NETtalk: A Parallel Network that Learns to Read Aloud
%I Johns Hopkins University
%A T.J. Sejnowski
%A C. Rosenberg
%D 1987
%T Parallel Networks that Learn to Pronounce English Text
%V 1
%A T. J. Sejnowski
%A C. Koch
%A P. S. Churchland
%D 1988
%T Computational neuroscience
%J Science
%V 240
%P 1299-1305
%A Bart Selman
%A Graeme Hirst
%D 1987
%T Parsing as an Energy Minimization Problem
%B Genetic Algorithms and Simulated Annealing
%E L. Davis
%I Pitman: London
%A David Servan-Schreiber
%A Axel Cleeremans
%A James L. McClelland
%D 1988
%T Encoding Sequential Structure in Simple Recurrent Networks
%I Carnegie-Mellon University
%A R. Shapley
%A V. H. Perry
%D 1986
%T Cat and monkey retinal ganglion cells
%S Trends in Neuroscience
%P 229-235
%A Lokendra Shastri
%D 1988
%T A Connectionist Approach to Knowledge Representation and Limited Inference
%V 12
%P 331-392
%A R.N. Shepard
%D 1962
%T The Analysis of Proximities: Multi-dimensional Scaling with an Unknown Distance Function, I & II
%V 27
%A John Maynard Smith
%D 1987
%T When learning guides evolution
%J Nature
%V 329
%P 761-762
%A P. Smolensky
%D 1986
%T Information Processing in Dynamical Systems: Foundations of Harmony Theory
%B Parallel Distributed Processing: Explorations in the Microstructure of Cognition; vol. 1: Foundations
%E J. McClelland and D. Rumelhart
%I MIT Press
%C Cambridge, Mass.
%A P. Smolensky
%D 1987
%T On variable binding and the representation of symbolic structures in connectionist systems
%S CU-CS-355-87
%I Department of Computer Science, University of Colorado
%C Boulder, CO
%A P. Smolensky
%D 1988
%T On the Proper Treatment of Connectionism
%V 11
%P 1-23
%A K. Steinbuch
%D 1963
%T Automat und Mensch
%I Springer
%C Berlin
%A P. Sterling
%A M. Freed
%A R. G. Smith
%D 1986
%T Microcircuitry and functional architecture of the cat retina
%S Trends in Neuroscience
%P 186-198
%A M. StJohn
%D 1988
%T Learning and Applying Contextual Constraints in Sentence Comprehension
%I Department of Psychology, Carnegie-Mellon University
%A R.S. Sutton
%D 1984
%T Temporal Aspects of Credit Assignment in Reinforcement Learning
%I University of Massachusetts
%A Richard S. Sutton
%D 1988
%T Learning to Predict by the Methods of Temporal Differences
%V 3
%P 9-44
%A S.L. Tanimoto
%D 1978
%T Regular Hierarchical Image and Processing Structures in Machine Vision
%B Computer Vision Systems
%E A. R. Hanson and E. M. Riseman
%I Academic Press
%C New York
%A Wilfrid K. Taylor
%D 1956
%T Electrical Simulation of Some Nervous System Functional Activity
%B Information Theory
%E E. C. Cherry
%I Butterworths
%C London
%A Peter Todd
%D 1988
%T Evolutionary methods for connectionist architectures
%I Psychology Department, Stanford University
%A C. Torras
%D 1989
%T Relaxation and neural learning: Points of convergence and divergence
%J Journal of Parallel and Distributed Computing
%V (In Press)
%A D.S. Touretzky
%A G.E. Hinton
%D 1985
%T Symbols Among the Neurons: Details of a Connectionist Inference Architecture
%S International Joint Conference on Artificial Intelligence
%C Los Angeles
%A D.S. Touretzky
%D 1986
%T BoltzCONS: Reconciling Connectionism with the Recursive Structure of Stacks and Trees
%S 8th Annual Conference of the Cognitive Science Society
%P 155-64
%A D.S. Touretzky
%D 1987
%T Representing Conceptual Structures in a Neural Network
%S IEEE First International Conference on Neural Networks
%C San Diego
%A D.S. Touretzky
%A G.E. Hinton
%D 1988
%T A Distributed Connectionist Production System
%V 12
%P 423-466
%A David S. Touretzky
%D 1988
%T Connectionism and PP Attachment
%S 1988 Connectionist Models Summer School
%E D. Touretzky, G. Hinton and T. Sejnowski
%I Morgan Kaufmann
%C Carnegie-Mellon University
%P 325-332
%A David S. Touretzky
%D 1989
%T Connectionism and Compositional Semantics
%I Computer Science Department, Carnegie-Mellon University
%A David S. Touretzky
%D 1989
%T Rules and Maps in Connectionist Symbol Processing
%I Computer Science Department, Carnegie-Mellon University
%A David S. Touretzky
%D 1989
%T Towards a Connectionist Phonology: the "Many Maps" Approach to Sequence Manipulation
%I Computer Science Department, Carnegie-Mellon University
%A L. Uhr
%D 1972
%T Layered Recognition Cone Networks that Preprocess, Classify, and Describe
%V 21
%P 758-768
%A L. Uhr
%D 1973
%T Pattern Recognition, Learning and Thought
%I Prentice-Hall
%C Englewood Cliffs, New Jersey
%A L. Uhr
%A R. Douglass
%D 1979
%T A parallel-serial recognition cone system for perception
%J Pattern Recognition
%V 11
%P 29-40
%A L. Uhr
%D 1983
%T Pyramid Multi-computer Structures, and Augmented Pyramids
%B Computing Structures for Image Processing
%E M. J. B. Duff
%I Academic Press
%C London
%A L. Uhr
%D 1986
%T Multiple image and multi-modal augmented pyramid networks
%B Intermediate Level Image Processing
%E M. J. B. Duff
%I Academic Press
%C London
%A L. Uhr
%D 1986
%T Toward a computational information processing model of object perception
%S Computer Sciences Technical Report #651
%I University of Wisconsin-Madison
%C Madison, WI
%A L. Uhr
%D 1987
%T Highly parallel, hierarchical, recognition cone perceptual structures
%B Parallel Computer Vision
%E L. Uhr
%I Academic Press
%C New York
%A S. Ullman
%D 1984
%T Visual Routines
%V 18
%P 97-159
%A P.E. Utgoff
%D 1986
%T Shift of Bias for Inductive Concept Learning
%B Machine Learning: An Artificial Intelligence Approach
%E R. S. Michalski, J. G. Carbonell and T. M. Mitchell
%I Morgan Kaufmann
%C Los Altos, CA
%A Leslie G. Valiant
%D 1984
%T A Theory of the Learnable
%V 27
%P 1134-1142
%A C. Von der Molsburg
%D 1973
%T Self-organization of Orientation-sensitive Cells in Striate Cortex
%V 14
%A John Von Neumann
%D 1956
%T Probabilistic Logics and the Synthesis of Reliable Organisms from Unreliable Components
%B Automata Studies
%E C. E. Shannon and J. McCarthy
%I Princeton University Press
%C Princeton, N.J.
%A A. Waibel
%D 1989
%T Connectionist glue: Modular design of neural speech systems
%B Proceedings of the 1988 Connectionist Models Summer School
%E G. H. a. T. S. D. Touretzky
%I Morgan Kaufmann
%C San Mateo, CA
%A D. Waltz
%D 1975
%T Generating Semantic Descriptions from Drawings of Scenes with Shadows
%B The Psychology of Computer Vision
%E P. Winston
%I McGraw-Hill
%C New York
%P 19-92
%A David L. Waltz
%A Jordan B. Pollack
%D 1985
%T Massively Parallel Parsing: A Strongly Interactive Model of Natural Language Interpretation
%V 9
%P 51-74
%A S. Waner
%A H. M. Hastings
%D 1985
%T Evolutionary learning of complex modes of information processing
%A Raymond L. Watrous
%A Lokendra Shastri
%D 1987
%T Learning Phonetic Features using Connectionist Networks: An Experiment in Speech Recognition
%S First International Conference on Neural Networks
%I IEEE
%C San Diego
%A P.J. Werbos
%D 1974
%T Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences
%I Harvard University
%A S. D. Whitehead
%A D. H. Ballard
%D 1989
%T Connectionist designs on planning
%B Proceedings of the 1988 Connectionist Models Summer School
%E G. H. a. T. S. D. Touretzky
%I Morgan Kaufmann
%C San Mateo, CA
%A Darrell Whitley
%D 1988
%T Applying Genetic Algorithms to Neural Network Problems: A Preliminary Report
%I Computer Science Dept., Colorado State University
%A Darrell Whitley
%A Joan Kauth
%D 1988
%T Genitor: A Different Genetic Algorithm
%B Proceedings of the 1988 Rocky Mountain Conference on Artificial Intelligence
%I Dept. of Computer Science, Colorado State University
%A W.A. Wickelgren
%D 1969
%T Context-sensitive Coding, Associative Memory, and Serial Order in (Speech) Behavior
%V 76
%A B. Widrow
%A M.E. Hoff
%D 1960
%T Adaptive Switching Circuits
%P 96-104
%A B. Widrow
%D 1962
%T Generalization and Information Storage in Networks of Adaline Neurons
%B Self-Organizing Systems 1962
%E M. C. Yovits, G. T. Jacobi and G. D. Goldstein
%I Spartan Books
%C Washington DC
%A B. Widrow
%A N.K. Gupta
%A S. Maitra
%D 1973
%T Punish/reward: Learning with a Critic in Adaptive Threshold Systems
%V 5
%P 455-465
%A B. Widrow
%A S.D. Stearns
%D 1985
%T Adaptive Signal Processing
%I Prentice-Hall
%A Robert Wilensky
%D 1986
%T Common LISPcraft
%I W.W. Norton
%C New York
%O QA76.73 C28 W55 1986
%A R. J. Williams
%A D. Zipser
%D 1988
%T A learning algorithm for continually running fully recurrent neural networks
%S ICS Report 8805
%I University of California, San Diego
%A D.J. Willshaw
%A O.P. Buneman
%A H.C. Longuet-Higgins
%D 1969
%T Non-holographic Associative Memory
%V 222
%A D. Willshaw
%D 1981
%T Holography, Associative Memory, and Inductive Generalization
%B Parallel Models of Associative Memory
%E G. E. Hinton and J. A. Anderson
%I Erlbaum
%C Hillsdale, N.J.
%A S. W. Wilson
%D 1985
%T Knowledge growth in an artificial animal
%S Proc. of an Intl. Conf. on Genetic Algorithms and Their Applications
%C Pittsburgh, PA
%A S. W. Wilson
%D 1987
%T Genetic algorithms and biological development
%S Proc. Second Intl. Conf. on Genetic Algorithms and Their Applications
%C Cambridge, MA
%A Terry Winograd
%D 1983
%T Language as a Cognitive Process
%I Addison-Wesley
%C Reading, Mass.
%A L.A. Zadeh
%D 1973
%T Outline of a New Approach to the Analysis of Complex Systems and Decision Processes
%P 22-44
%A S. Zeki
%A S. Shipp
%D 1988
%T The functional logic of cortical connections
%J Nature
%V 335
%P 311-317
%A S. Zucker
%A R. Hummel
%A A. Rosenfeld
%D 1977
%T An Application of Relaxation Labeling to Line and Curve Enhancement
%V C-26(4)
%P 394-403
------------------------------
End of Neurons Digest
*********************