PiHKAL: The Chemical Story 11
#139 ORTHO-DOT; 4,5-DIMETHOXY-2-METHYLTHIOAMPHETAMINE
SYNTHESIS: To 26.4 g veratrol that was being magnetically stirred without any solvent, there was added 50 g chlorosulfonic acid a bit at a time over the course of 20 min. The reaction was exothermic, and evolved considerable HCl. The deeply colored mixture that resulted was poured over 400 mL crushed ice and when all had thawed, it was extracted with 2x150 mL CH2Cl2. Removal of the solvent under vacuum gave a residue that set up as a crystalline mass. The weight of the crude 3,4-dimethoxybenzenesulfonyl chloride was 37.1 g and it had a mp of 63-66 °C. Recrystallization raised this to 72-73 °C. Reaction with ammonium hydroxide gave the sulfonamide as colorless needles from EtOH, with a mp of 132-133 °C.
The finely pulverized 3,4-dimethoxybenzenesulfonyl chloride (33 g) was added to 900 mL of crushed ice in a 2 L round-bottomed flask equipped with a heating mantle and reflux condenser. There was then added 55 mL concentrated H2SO4 and, with vigorous mechanical stirring, there was added 50 g of zinc dust in small portions. This mixture was heated until a vigorous reaction ensued and refluxing was continued for 1.5 h. After cooling to room temperature and decantation from unreacted metallic zinc, the aqueous phase was extracted with 3x150 mL Et2O. The pooled extracts were washed once with saturated brine and the solvent was removed under vacuum. The residue was distilled to give 20.8 g of 3,4-dimethoxythiophenol boiling at 86-88 °C at 0.4 mm/Hg.
A solution of 10 g 3,4-dimethoxythiophenol in 50 mL absolute EtOH was protected from the air by an atmosphere of N2. There was added a solution of 5 g 85% KOH in 80 mL EtOH. This was followed by the addition of 6 mL methyl iodide, and the mixture was held at reflux for 30 min. This was poured into 200 mL H2O and extracted with 3x50 mL Et2O. The pooled extracts were washed once with aqueous sodium hydrosulfite, then the organic solvent was removed under vacuum. The residue was distilled to give 10.3 g of 3,4-dimethoxythioanisole with a bp of 94-95 °C at 0.4 mm/Hg. The product was a colorless oil that crystallized on standing. Its mp was 31-32 °C.
To a mixture of 15 g POCl3 and 14 g N-methylformanilide that had been warmed briefly on the steam bath there was added 8.2 g of 3,4-dimethoxythioanisole, the exothermic reaction was heated on the steam bath for an additional 20 min, and then poured into 200 mL H2O. Stirring was continued until the insolubles had become completely loose and granular. These were removed by filtration, washed with H2O, sucked as dry as possible, and then recrystallized from 100 mL boiling EtOH. The product, 4,5-dimethoxy-2-(methylthio)benzaldehyde, was an off-white solid, weighing 8.05 g and having a mp of 112-113 °C. Anal. (C10H12O3S) C,H.
A solution of 2.0 g 4,5-dimethoxy-2-(methylthio)benzaldehyde in 8 mL nitroethane was treated with 0.45 g anhydrous ammonium acetate and heated on the steam bath for 4.5 h. Removal of the excess solvent under vacuum gave a red residue which was dissolved in 5 mL boiling MeOH. There was the spontaneous formation of a crystalline product which was recrystallized from 25 mL boiling MeOH to give, after cooling, filtering and air drying, 1.85 g of 1-(4,5-dimethoxy-2-methylthiophenyl)-2-nitropropene as bright orange crystals with a mp of 104-105 °C. Anal. (C12H15NO4S) C,H,N.
A suspension of 1.3 g LAH in 50 mL anhydrous THF was placed under an inert atmosphere and stirred magnetically. When this had been brought to reflux conditions, there was added, dropwise, 1.65 g of 1-(4,5-dimethoxy-2-methylthiophenyl)-2-nitropropene in 20 mL THF. The reaction mixture was maintained at reflux for 18 h. After being brought back to room temperature, the excess hydride was destroyed by the addition of 1.3 mL H2O in 10 mL THF. There was then added 1.3 mL of 3N NaOH followed by an additional 3.9 mL H2O. The loose, inorganic salts were removed by filtration, and the filter cake washed with additional 20 mL THF. The combined filtrate and washes were stripped of solvent under vacuum yielding a light yellow oil as a residue. This was dissolved in 20 mL IPA, neutralized with 0.9 mL concentrated HCl, and diluted with 200 mL anhydrous Et2O. There was thus formed 1.20 g of 4,5-dimethoxy-2-methylthioamphetamine hydrochloride (ORTHO-DOT) as a pale yellow crystalline product. This melted at 218-219.5 °C, and recrystallization from EtOH yielded a white product and increased the mp to 222-223 °C with decomposition Anal. (C12H20ClNO2S) C,H,N.
DOSAGE: greater than 25 mg.
DURATION: unknown.
QUALITATIVE COMMENTS: (with 25 mg) Vague awareness, with the feeling of an impending something. Light food sat uncomfortably. By the late afternoon there was absolutely nothing. Threshold at best.
EXTENSIONS AND COMMENTARY: This material, ORTHO-DOT, can be looked at as the sulfur homologue of TMA-2 with the sulfur atom located in place of the oxygen at the 2-position of the molecule. At what level this compound might show activity is completely unknown, but wherever that might be, it is at a dosage greater than that for the PARA-DOT isomer, ALEPH-1 (or ALEPH), which was fully active at 10 milligrams (ALEPH can be looked at as TMA-2 with the sulfur atom located in place of the oxygen at the 4-position of the molecule). A lot of variations are easily makable based on this structure, but why bother? ALEPH is the much more appealing candidate for structural manipulation.
#140 P; PROSCALINE; 3,5-DIMETHOXY-4-(n)-PROPOXYPHENETHYLAMINE
SYNTHESIS: A solution of 5.8 g of homosyringonitrile (see under E for its synthesis), 100 mg decyltriethylammonium iodide, and 10 g n-propyl bromide in 50 mL anhydrous acetone was treated with 6.9 g finely powdered anhydrous K2CO3 and held at reflux for 10 h. An additional 5 g of n-propyl bromide was added to the mixture, and the refluxing continued for another 48 h. The mixture was filtered, the solids washed with acetone, and the combined filtrate and washes stripped of solvent under vacuum. The residue was suspended in acidified H2O, and extracted 3x175 mL CH2Cl2. The pooled extracts were washed with 2x50 mL 5% NaOH, once with dilute HCl (which lightened the color of the extract) and then stripped of solvent under vacuum giving 9.0 g of a deep yellow oil. This was distilled at 132-142 °C at 0.3 mm/Hg to yield 4.8 g of 3,5-dimethoxy-4-(n)-propoxyphenylacetonitrile as a clear yellow oil. Anal. (C13H17NO3) C H N.
A solution of 4.7 g 3,5-dimethoxy-4-(n)-propoxyphenylacetonitrile in 20 mL THF was treated with 2.4 g powdered sodium borohydride. To this well-stirred suspension there was added, dropwise, 1.5 mL trifluoroacetic acid. There was a vigorous gas evolution from the exothermic reaction. Stirring was continued for 1 h, then all was poured into 300 mL H2O. This was acidified cautiously with dilute H2SO4, and washed with 2x75 mL CH2Cl2. The aqueous phase was made basic with dilute NaOH, extracted with 2x75 mL CH2Cl2, the extracts pooled, and the solvent removed under vacuum. The residue was distilled at 115-125 °C at 0.3 mm/Hg to give 1.5 mL of a colorless oil which upon dissolving in 5 mL IPA, neutralizing with 27 drops concentrated HCl, and dilution with 25 mL anhydrous Et2O yielded 1.5 g 3,5-dimethoxy-4-(n)-propoxyphenethylamine hydrochloride (P) as spectacular white crystals. The catalytic hydrogenation process for reducing the nitrile (see under E) also succeeded with this material. The mp was 170-172 °C. Anal. (C13H22ClNO3) C,H,N.
DOSAGE: 30 - 60 mg.
DURATION: 8 - 12 h.
QUALITATIVE COMMENTS: (with 30 mg) Proscaline dulled my sense of pain and made the other senses really sharp. Everything felt really soft, and clean and clear. I could feel every hair my hand was touching. I felt so relaxed and at ease. I know that under the appropriate circumstances, this material would lead to uninhibited eroticism.
(with 35 mg) The whole experiment was very quiet. There was no nystagmus, no anorexia, and insignificant visuals with the eyes closed. I was restless with a bit of tremor for the first couple of hours, and then became drowsy. Would I do this again? Probably not. It doesn't seem to offer anything except speculation about the nature of the high. The high was pleasant, but quite uneventful.
(with 40 mg) For me there was a deep feeling of peace and contentment. The euphoria grows in intensity for several hours and remains for the rest of the day making this one of the most enjoyable experiences I have ever had. It was marvel-ous talking and joking with the others. However, I was a little disappointed that there was no enhanced clarity and no deep realizations. There was not a problem to be found. There were no motivations to discuss anything serious. If I had any objection, it would be with the name, not the pharmacology.
(with 60 mg) The development of the intoxication was complete in a couple of hours. I feel that there is more physical effect than mental, in that there is considerable irritability. This should probably be the maximum dose. Despite feeling quite drunk, my thinking seems straight. The effects were already waning by the fifth hour, but sleep was not possible until after the twelth hour. There was no hangover the next day.
EXTENSIONS AND COMMENTARY: There is a very early report describing the human use of proscaline tucked away in the Czechoslovakian literature that describes experiments at up to 80 milligrams. At these dosages, there were reported some difficulty with dreams, and the residual effects were still apparent even after 12 hours.
The amphetamine homologue of proscaline, 3,5-dimethoxy-4-(n)-propoxy-amphetamine is an unexplored compound. Its synthesis could not be achieved in parallel to the description given for P. Rather, the propylation of syringaldehyde to give 3,5-dimethoxy-4-(n)-propoxybenzaldehyde, followed by coupling with nitroethane and the reduction of the formed nitrostyrene with lithium aluminum hydride would be the logical process. Following the reasoning given under E, the initials for this base would be 3C-P, and I would guess it would be active, and a psychedelic, in the 20 to 40 milligram range.
#141 PE; PHENESCALINE; 3,5-DIMETHOXY-4-PHENETHYLOXYPHENETHYLAMINE
SYNTHESIS: To a solution of 5.8 g homosyringonitrile (see under E for its preparation) in 50 mL of acetone containing 100 mg decyltriethylammonium iodide, there was added 14.8 g '-phenethylbromide and 6.9 g of finely powdered anhydrous K2CO3. The greenish mixture was refluxed for 3 days, with two additional 4 g batches of anhydrous K2CO3 being added at 24 h intervals. After addition to aqueous base, the product was extracted with CH2Cl2, the pooled extracts were washed with dilute base (the organic phase remained a deep purple color) and then finally with dilute HCl (the organic phase became a pale yellow). The solvent was removed giving 15.6 g crude 3,5-dimethoxy-4-phenethyloxyphenylacetonitrile which distilled at 165-185 °C at 0.3 mm/Hg to yield 3,5-dimethoxy-4-phenethyloxyphenylacetonitrile as a reddish viscous oil weighing 8.1 g. Anal. (C18H19NO3) C,H.
A solution of 7.9 g of distilled 3,5-dimethoxy-4-phenethyloxyphenylacetonitrile in 15 mL dry THF was added to a 0 °C solution of AH prepared from a vigorously stirred solution of 4.6 g LAH in 160 ml THF which had been treated, at 0 °C with 3.6 mL 100% H2SO4 under an atmosphere of He. The gelatinaceous reaction mixture was brought to a brief reflux on the steam bath, then cooled again. It was treated with 5 mL IPA which destroyed the unreacted hydride, followed by sufficient 15% NaOH to give loose, white filterable solids. These were removed by filtration and washed with THF. The filtrate and the washes were combined and, after removal of the solvent under vacuum, there remained 7.8 g of the product as a crude base which crystallized spontaneously. Distillation of this product at 170-180 °C at 0.35 mm/Hg gave 5.1 g white solids, with a mp of 85-86 °C from hexane. This base was dissolved in 20 mL warm IPA and treated with 1.6 mL concentrated HCl. To the resulting clear solution, there was added 75 mL anhydrous Et2O which gave, after a few moments of stirring, a spontaneous crystallization of 3,5-di-methoxy-4-phenethyloxyphenethylamine hydrochloride (PE) as beautiful white crystals. The weight was 5.4 g after air drying, and the mp was 151-152 °C. Anal. (C18H24ClNO3) C,H.
DOSAGE: greater than 150 mg.
DURATION: unknown.
QUALITATIVE COMMENTS: (with 150 mg) At most, there was a bare threshold over the course of the afternoon. A vague unreal feeling, as if I had not had quite enough sleep last night. By late afternoon, even this had disappeared and I was left with an uncertainty that anything at all had occurred.
EXTENSIONS AND COMMENTARY: There is not much there, so there is not much to make commentary on. This response is called a RthreshholdS effect, and cannot be used to predict with any confidence just what level (if any) would produce psychological effects.
A similar chain on the 4-position, but with one less carbon atom, deserves special comment. Rather than a phenethyloxy group, this would be benzyloxy group (which in this day and age of Chemical Abstracts purity should probably be called a phenylmethoxy group). If one were to follow the naming philosophy of Rproscaline equals P and buscaline equals BS convention, one would call it 4-benzescaline, and give it the code name BZ. The nomenclature purist would probably call the compound PM (for phenylmescaline or, more likely phenylmethoxydimethoxyphenethylamine), since the term BZ is awkward and misleading. It is a code name that has been given to a potent CNS agent known as quinuclidin-3-yl benzilate, which is a chemical and biological warfare (CBW) incapacitating agent currently being stored by the military to the extent of 20,000 pounds. And, BZ has also recently become the jargon name given to benzodiazepine receptors. They have been called the BZ-receptors.
However, let's be awkward and misleading, and call this benzyloxy-base BZ. For one thing, the three-carbon analogue 3C-BZ has already been described in its own recipe using this code. And the 4-fluoroanalogue of it, 3C-FBZ, is also mentioned there. And BZ has already been described synthetically, having been made in exactly the procedure given for escaline, except that the reduction of the nitrile was not done by catalytic hydrogenation but rather by sodium borohydride in the presence of cobalt chloride. It has been shown to be a effective serotonin agonist, and may warrant human experimentation. The serotonin activity suggests that it might be active at the same levels found for proscaline.
All of this says very little about PE. But then, there is very little to say about PE except that it may be active at very high levels, and I am not sure just how to get there safely.
#142 PEA; PHENETHYLAMINE
SYNTHESIS: This compound has been made industrially by a number of routes, the motant being the reduction of benzyl cyanide and the decarboxylation of phenylanaline. It is offered in the catalogs of all the major chemical supply houses for a few pennies per gram. It is a very strong base with a fishy smell, and rapidly forms a solid carbonate salt upon exposure to the air. It is a natural biochemical in both plants and animals.
DOSAGE: greater than 1600 mg.
DURATION: unknown.
QUALITATIVE COMMENTS: (with 200, 400, 800 and 1600 mg) No effects.
(with 500 mg) No effects.
(with 800 and 1600 mg) No effects.
(with 25 and 50 mg i.v.) RNo effects.
EXTENSIONS AND COMMENTARY: Here is the chemical that is central to this entire book. This is the structural point of departure for every compound that is discussed here. It is the RPS in PIHKAL. It is without activity in man° Certainly not for the lack of trying, as some of the dosage trials that are tucked away in the literature (as abstracted in the "Qualitative Comments" given above) are pretty heavy duty. Actually, I truly doubt that all of the experimenters used exactly that phrase, "No effects," but it is patently obvious that no effects were found. It happened to be the phrase I had used in my own notes.
This, the simplest of all phenethylamines, has always been the darling of the psychopharmacologists in that it is structurally clean, it is naturally present in various human fluids and tissues, and because of its close chemical relationship to amphetamine and to the neurotransmitters. These facts continuously encourage theories that involve PEA in mental illness. Its levels in urine may be decreased in people diagnosed as being depressed. Its levels may be increased in people diagnosed as being paranoid schizophrenics. Maybe it is also increased in people under extreme stress. The human trials were initially an attempt to provoke some psychological change, and indeed some clinicians have reported intense headaches generated in depressives following PEA administration. But then, others have seen nothing. The studies evolved into searches for metabolic difference that might be of some diagnostic value. And even here, the jury is still out.
Phenethylamine is found throughout nature, in both plants and animals. It is the end product of phenylalanine in the putrefaction of tissue. One of its most popularized occurrences has been as a major component of chocolate, and it has hit the Sunday Supplements as the love-sickness chemical. Those falling out of love are compulsive chocolate eaters, trying to replenish and repair the body's loss of this compound Q or so the myth goes. But this amine is voraciously metabolized to the apparently inactive compound phenylacetic acid, and to some tyramine as well. Both of these products are also normal components in the body. And, as a wry side-comment, phenylacetic acid is a major precursor in the illicit synthesis of amphetamine and methamphetamine.
Phenethylamine is intrinsically a stimulant, although it doesn't last long enough to express this property. In other words, it is rapidly and completely destroyed in the human body. It is only when a number of substituent groups are placed here or there on the molecule that this metabolic fate is avoided and pharmacological activity becomes apparent.
To a large measure, this book has emphasized the "phenyl" end of the phenethylamine molecule, and the "what," the where,S and the "how many" of the substituent groups involved. There is a broad variety of chemical groups that can be attached to the benzene ring, at one or more of the five available positions, and in an unending number of combinations. And, in any given molecule, the greater the number of substituents on the benzene ring, the greater the likelihood that there will be psychedelic action rather that stimulant action.
But what can be said about the "ethylamine" end of the phenethylamine molecule? This is the veritable backbone that holds everything together, and simple changes here can produce new prototypes that can serve as starting points for the substituent game on the benzene ring. Thus, just as there is a "family" of compounds based on the foundation of phenethylamine itself, there is an equally varied and rich "families" of other compounds that might be based on some phenethylamine with a small modification to its backbone.
So, for the moment, leave the aromatic ring alone, and let us explore simple changes in the ethylamine chain itself. And the simplest structural unit of change is a single carbon atom, called the methyl group. Where can it be placed?
The adding of a methyl group adjacent to the amine produces phenylisopropylamine, or amphetamine. This has been exploited already as one of the richest families of psychedelic drugs; and over half of the recipes in Book II are specifically for amphetamine analogues with various substituents on the aromatic ring. The further methylation of amphetamine with yet another methyl group, this time on the nitrogen atom, yields methamphetamine. Here the track record with various substituents on the aromatic ring is not nearly as good. Many have been explored and, with one exception, the quality and potency of human activity is down. But the one exception, the N-methyl analogue of MDA, proved to be the most remarkable MDMA.
The placement of the methyl group between the two carbons (so to speak) produces a cyclopropyl system. The simplest example is 2-phenylcyclopropylamine, a drug with the generic name of tranylcypromine and the trade name Parnate. It is a mono-amine oxidase inhibitor and has been marketed as an antidepressant, but the compound is also a mild stimulant causing insomnia, restlessness and photophobia. Substitutions on the benzene ring of this system have not been too promising. The DOM analogue, 2,5-dimethoxy-4-methyltranylcypromine is active in man, and is discussed in its own recipe under DMCPA. The inactive mescaline analogue TMT is also mentioned there.
The dropping of one carbon from the phenethylamine chain gives a benzyl amine, basically an inactive nucleus. Two families deserve mention, however. The phencylidine area, phenylcyclohexylpiperidine or PCP, is represented by a number of benzyl amines. Ketamine is also a benzyl amine. These are all analgesics and anesthetics with central properties far removed from the stimulant area, and are not really part of this book. There is a benzyl amine that is a pure stimulant, which has been closely compared to amphetamine in its action This is benzylpiperazine, a base that is active in the 20 to 100 milligram range, but which has an acceptability similar to amphetamine. If this is a valid stimulant, I think that much magic might be found in and around compounds such as (1) the MDMA analogue, N-(3,4-methylenedioxybenzyl)piperazine (or its N-methyl-counterpart N-(3,4-methylenedioxybenzyl)-NU-methylpiperazine) or (2) the DOM analogue, 2,5-dimethoxy-4-methylbenzylpiperazine. The benzyl amine that results by the relocation of the amine group of MDA from the beta-carbon atom to the alpha-carbon atom is known, and is active. It, and its N-methyl homologue, are described and discussed in the commentary under MDA. Dropping another carbon atom gives a yet shorter chain (no carbons at all°) and this is to be found in the phenylpiperazine analogue 3-trifluoromethylphenylpiperazine. I have been told that this base is an active hallucinogen as the dihydrobromide salt at 50 milligrams sublingually, or at 15 milligrams intravenously in man. The corresponding 3-chloro analogue at 20 to 40 milligrams orally in man or at 8 milligrams intravenously, led to panic attacks in some 10% of the experimental subjects, but not to any observed psychedelic or stimulant responses.
What happens if you extend the chain to a third carbon? The parent system is called the phenyl-(n)-propylamine, and the parent chain structure, either as the primary amine or as its alpha-methyl counterpart, represents compounds that are inactive as stimulants. The DOM-analogues have been made and are, at least in the rabbit rectal hyperthermia assay, uninteresting. A commercially available fine chemical known as piperonylacetone has been offered as either of two materials. One, correctly called 3,4-methylenedioxyphenylacetone or 3,4-methylenedioxybenzyl methyl ketone, gives rise upon reductive amination to MDA (using ammonia) or MDMA (using methylamine). This is an aromatic compound with a three-carbon side-chain and the amine-nitrogen on the beta-carbon. The other so-called piperonylacetone is really 3,4-methylenedioxybenzylacetone, an aromatic compound with a four-carbon side-chain. It produces, on reductive amination with ammonia or methylamine, the corresponding alpha-methyl-(n)-propylamines, with a four-carbon side-chain and the amine-nitrogen on the gamma-carbon. They are completely unexplored in man and so it is not known whether they are or are not psychedelic. As possible mis-synthesized products, they may appear quite unintentionally and must be evaluated as totally new materials. The gamma-amine analogue of MDA, a methylenedioxy substituted three carbon side-chain with the amine-nitrogen on the gamma carbon, has indeed been made and evaluated, and is discussed under MDA. The extension of the chain of mescaline to three atoms, by the inclusion of an oxygen atom, has produced two compounds that have also been assayed. They are mentioned in the recipe for mescaline.
The chain that reaches out to the amine group can be tied back in again to the ring, with a second chain. There are 2-aminobenzoindanes which are phenethylamines with a one-carbon link tying the alpha-position of the chain back to the aromatic ring. And there are 2-aminotetralines which are phenethylamines which have a two-carbon link tying the alpha-position of the chain back to the aromatic ring. Both unsubstituted ring systems are known and both are fair stimulants. Both systems have been modified with the DOM substituent patterns (called DOM-AI and DOM-AT respectively), but neither of these has been tried in man. And the analogues with the MDA substitution pattern are discussed elsewhere in this book.
And there is one more obvious remaining methylation pattern. What about phenethylamine or amphetamine compounds with two methyl groups on the nitrogen? The parent amphetamine example, N,N-dimethylamphetamine, has received much notoriety lately in that it has become a scheduled drug in the United States. Ephedrine is a major precursor in the illicit synthesis of methamphetamine, and with the increased law-enforcement attention being paid to this process, there has been increasing promotion of the unrestricted homologue, N-methylephedrine, to the methamphetamine chemist. This starting material gives rise to N,N-dimethylamphetamine which is a material of dubious stimulant properties. A number of N,N-dimethylamphetamine derivatives, with "psychedelic" ring substituents, have been explored as iodinated brain-flow indicators, and they are explicitly named within the appropriate recipes. But none of them have shown any psychedelic action.
This is as good a place as any to discuss two or three simple compounds, phenethylamines, with only one substituent on the benzene ring. The 2-carbon analog of 4-MA, is 4-methoxyphenethylamine, or MPEA. This is a kissing cousin to DMPEA, of such fame in the search for a urine factor that could be related to schizophrenia. And the end results of the search for this compound in the urine of mentally ill patients are as controversial as they were for DMPEA. There has been no confirmed relationship to the diagnosis. And efforts to see if it is centrally active were failures Q at dosages of up to 400 milligrams in man, there was no activity. The 4-chloro-analogue is 4-chlorophenethylamine (4-Cl-PEA) and it has actually been pushed up to even higher levels (to 500 milligrams dosage, orally) and it is also without activity. A passing bit of charming trivia. A positional isomer of MPEA is 3-methoxyphenethylamine (3-MPEA) and, although there are no reported human trials with this, it has been graced with an Edgewood Arsenal code number, vis., EA-1302.
#143 PROPYNYL; 3,5-DIMETHOXY-4-(2-PROPYNYLOXY)PHENETHYLAMINE
SYNTHESIS: To a solution of 5.8 g homosyringonitrile (see under E for its preparation) in 50 mL acetone containing 100 mg decyltriethylammonium iodide, there was added 12 g of an 80% solution of propargyl bromide in toluene and 6.9 g of finely powdered anhydrous K2CO3. This mixture was held at reflux on the steam bath for 12 h, after which the solvent was removed under vacuum. The residues were added to 0.5 L H2O, acidified, and extracted with 3x75 mL CH2Cl2. The extracts were pooled, washed with 5% NaOH, and then with dilute HCl which discharged the deep color. Removal of the organic solvent under vacuum yielded 6.6 g of crude product. This was distilled at 138-148 °C at 0.25 mm/Hg, yielding 4.3 g 3,5-dimethoxy-4-(2-propynyloxy)phenylacetonitrile which spontaneously crystallized. A small sample from MeOH had a mp of 94-95 °C. Anal. (C13H13NO3) C,H.
A suspension of 2.8 g LAH in 70 mL anhydrous THF was cooled to 0 °C with good stirring under He, and treated with 2.0 g 100% H2SO4. To this, a solution of 4.2 g 3,5-dimethoxy-4-(2-propynyloxy)phenylacetonitrile in 30 mL anhydrous THF was added very slowly. After the addition had been completed, the reaction mixture was held at reflux on the steam bath for 0.5 h, cooled to room temperature, treated with IPA to decompose the excess hydride, and finally with 15% NaOH to convert the solids to a white filterable mass. The solids were separated by filtration, the filter cake was washed with THF, and the filtrate and washes were pooled. After removal of the solvent, the residue was added to 100 mL dilute H2SO4, and washed with 3x75 mL CH2Cl2. The aqueous phase was made basic with dilute NaOH, and the product extracted with 2x75 mL CH2Cl2. After removal of the solvent under vacuum, the residue was distilled at 125-155 °C at 0.3 mm/Hg to provide 2.4 g of a light amber viscous liquid. This was dissolved in 10 mL IPA, acidified with concentrated HCl until a droplet produced a red color on dampened, external universal pH paper, and then diluted with 40 mL anhydrous Et2O with good stirring. After a short delay, 3,5-dimethoxy-4-(2-propynyloxy)phenethylamine hydrochloride (PROPYNYL) spontaneously crystallized. The product was removed by filtration, washed first with an IPA/Et2O mixture, and finally with Et2O. The yield was 3.0 g of white needles.
DOSAGE: 80 mg or more.
DURATION: 8 - 12 h.
QUALITATIVE COMMENTS: (with 55 mg) I have cold feet Q literally Q I don't mean that in the spiritual or adventurous sense. But also I am somewhat physically fuzzy. I feel that if I were in public my behavior would be such that someone would notice me. Everything was OK without any question at the ninth hour. I could walk abroad again.
(with 80 mg) There is a body load. The flow of people around me all day has demanded my attention, and when I had purposefully retreated to be by myself, there was no particular reward as to visuals or anything with eyes closed, either. Sleep was easy at midnight (the twelth hour of the experiment) but the morning was sluggish, and on recalling the day, I am not sure of the events that had taken place. Higher might be all right, but watch the status of the body. There certainly wasn't that much mental stuff.
EXTENSIONS AND COMMENTARY: No experiments have been performed that describe the action of this drug at full level. This compound does not seem to have the magic that would encourage exploration at higher levels.
#144 SB; SYMBESCALINE; 3,5-DIETHOXY-4-METHOXYPHENETHYLAMINE
SYNTHESIS: A solution of 15 g 1,3-diethoxybenzene and 15 mL of N,N,NU,NU-tetramethylethylenediamine in 200 mL anhydrous Et2O was placed in a He atmosphere, magnetically stirred, and cooled to 0 °C with an ice bath. Over the course of 10 min there was added 63 mL of a 1.6 M solution of butyllithium in hexane, which produced a fine white precipitate. After an additional 15 min stirring, 20 mL of tributyl borate was added which dissolved the precipitate. The stirring was continued for an additional 15 min. The reaction was quenched by the addition of 50 mL of a concentrated aqueous solution of ammonium sulfate. The resulting "cottage cheese" mass was transferred to a beaker, treated with an additional 300 mL of the ammonium sulfate solution, and allowed to stir until the solids had dispersed to a fine texture. The organic phase was separated and the aqueous phase extracted with 2x100 mL Et2O. The organic phases were combined, evaporated under vacuum, and the off-white residue dissolved in 100 mL MeOH. This cloudy solution was cooled (ice bath) and, with stirring, 20 mL of 35% hydrogen peroxide was added portionwise, . The reaction was allowed to continue stirring for 15 min, and then with the addition of 600 mL H2O, crystalline solids were formed. These were removed, washed with H2O, and upon drying yielded 15.4 g of 2,6-diethoxyphenol with a mp of 79.5-81.5 °C. Efforts to diethylate pyrogallol produced mixtures of 2,6-diethoxyphenol and the isomer, 2,3-diethoxyphenol, and these proved difficult to separate. The pure 2,3-isomer was synthesized from ortho-diethoxybenzene by the process used above, and the product was an oil. Both phenols yielded crystalline 3,5-dinitrobenzoates. This derivative of 2,6-diethoxyphenol, upon recrystallization from CH3CN had a mp of 161-162 °C. The derivative from 2,3-diethoxyphenol, also upon recrystallization from CH3CN, melted at 167-168 °C. The mixed mp was appropriately depressed (mp 137-140 °C.).
A solution of 7.6 g 2,6-diethoxyphenol in 40 mL MeOH was treated with 4.9 g of a 40% aqueous solution of dimethylamine followed by 3.6 g of a 40% aqueous solution of formaldehyde. The mixture was heated 1 h on the steam bath, and all volatiles were removed under vacuum. The residual dark oil was dissolved in 36 mL IPA and 10.3 g of methyl iodide was added. There was spontaneous heating, and the deposition of fine white solids. After standing for 10 min, these were removed by filtration, and the filter cake washed with more IPA. The crude product was freed from solvent (air dried weight, 1.7 g) and dissolved in 7 mL hot H2O. To this hot solution there was added 1.7 g sodium cyanide which slowly discharged the color and again deposited flocculant white solids. After cooling, these were removed by filtration, washed with H2O, and after thorough drying the isolated 3,5-diethoxy-4-hydroxyphenylacetonitrile weighed 0.5 g and had a mp of 107.5-108.5 °C. Anal. (C12H15NO3) C,H.
To a solution of 2.1 g 3,5-diethoxy-4-hydroxyphenylacetonitrile in 20 mL anhydrous acetone, there was added 30 mg triethyldecylammonium iodide, 4.6 g methyl iodide, and finally 2.3 g powdered anhydrous K2CO3. This mixture was held at reflux for 5 h. The reaction mixture was quenched with 200 mL acidified H2O and extracted with 3x75 mL CH2Cl2. The extracts were pooled, washed with 2x75 mL 5% NaOH, and finally once with dilute HCl. The solvent was removed under vacuum, and the residue distilled at 110-115 °C at 0.3 mm/Hg to provide 3,5-diethoxy-4-methoxyphenylacetonitrile as a solid. This weighed 1.3 g and had a mp of 58-59 °C. Anal. (C13H17NO3) C,H.
To 30 mL of a 1 M solution LAH in THF that had been cooled to 0 °C with vigorous stirring, under a He atmosphere, there was added dropwise 0.78 mL of 100% H2SO4. When the addition was complete, there was added dropwise a solution of 1.3 g of 3,5-diethoxy-4-methoxyphenylacetonitrile in 10 mL anhydrous THF. The reaction mixture was brought to room temperature and stirred an additional 10 min, then refluxed on a steam bath for 1.5 h. After cooling to room temperature the excess hydride was destroyed by the addition of about 2 mL IPA, followed by sufficient 15% NaOH to make the reaction basic to external pH paper and to render the aluminum oxides white and filterable. These were removed by filtration, the filter cake was washed with IPA, then the filtrate and washes were combined. The solvents were removed under vacuum and the residue dissolved in dilute H2SO4. This was washed with 2x75 mL CH2Cl2, the aqueous phase made basic with 5% NaOH, and extracted with 3x75 mL CH2Cl2. The extracts were pooled, the solvent removed under vacuum, and the residue distilled at 120-140 °C at 0.3 mm/Hg to yield 0.9 g of a white oil. This was dissolved in 4 mL of IPA and neutralized with concentrated HCl to an end-point determined by damp external pH paper. There was the immediate formation of solids which were removed by filtration and washed first with IPA and then with Et2O. This provided 1.0 g of 3,5-diethoxy-4-methoxyphenethylamine hydrochloride (SB) as white crystals, with a mp of 186-187 °C. Anal. (C13H22ClNO3) C,H.
DOSAGE: above 240 mg.
DURATION: unknown.
QUALITATIVE COMMENTS: (with 120 mg) There were no effects. Sleep that evening was strange, however, and I was fully awake at 4:00 AM, alert, and mentally restless. And there was a strange outburst of anger in the mid-morning. Might these be related to the material the previous day?S
(with 240 mg) There was a slight chill that reminded me that I had taken symbescaline a half hour earlier. There was what might be called a vague threshold for about three hours, then nothing more. This material had a God-awful taste that lingers in the mouth far too long. If ever again, it will be in a gelatin capsule.
EXTENSIONS AND COMMENTARY: It must be concluded that SB is "probably" not active. There was no convincing evidence for much effect at levels that would clearly be active for mescaline. This is the kind of result that puts some potentially ambiguous numbers in the literature. One cannot say that it is inactive, for there might well be something at 400 or 800 or 1200 milligrams. But since it has been tried only up to 240 milligrams, I have used the phrase that the activity is greater than 240 milligrams. This will be interpreted by some people as saying that it is active, but only at dosages higher than 240 milligrams. What is meant, is that there was no activity observed at the highest level tried, and so if it is active, the active dose will be greater than 240 milligrams, and so the potency will be less than that of mescaline. However you phrase it, someone will misinterpret it.
#145 TA; 2,3,4,5-TETRAMETHOXYAMPHETAMINE
SYNTHESIS: To a solution of 50 g 2,3,4-trimethoxybenzaldehyde in 157 mL glacial acetic acid which was well stirred and preheated to 25 °C there was added 55.6 g 40% peracetic acid in acetic acid. The rate of addition was adjusted to allow the evolved heat of the exothermic reaction to be removed by an external ice bath at a rate that kept the internal temperature within a degree of 25 °C. When the addition was complete and there was no more heat being evolved, the reaction mixture was diluted with 3 volumes of H2O, and neutralized with solid K2CO3. All was extracted with 3x250 mL Et2O, and the removal of the solvent from the pooled extracts under vacuum gave 42 g of residue that appeared to be mainly phenol, with a little formate and aldehyde. This was dissolved in 200 mL of 10% NaOH, allowed to stand for 2 h at ambient temperature, washed with 2x75 mL CH2Cl2, acidified with HCl, and extracted with 3x100 mL Et2O. The pooled extracts were washed with saturated NaHCO3, and the solvent removed to give 34.7 g of 2,3,4-trimethoxyphenol as an amber oil which was used without further purification. The infra-red spectrum showed no carbonyl group, of either the formate or the starting aldehyde.
A solution of 11.4 g flaked KOH in 100 g EtOH was treated with 33.3 g 2,3,4-trimethoxyphenol and 21.9 g allyl bromide. The mixture was held at reflux for 1.5 h, then poured into 5 volumes of H2O, made basic with the addition of 25% NaOH, and extracted with 3x200 mL CH2Cl2. Removal of the solvent from the pooled extracts gave about 40 g of a crude 2,3,4-trimethoxy-1-allyloxybenzene that clearly had unreacted allyl bromide as a contaminant.
A 39 g sample of crude 2,3,4-trimethoxy-1-allyloxybenzene in a round-bottomed flask with an immersion thermometer was heated with a soft flame. At 225 °C there was a light effervescence and at 240 °C an exothermic reaction set in that raised the temperature immediately to 265 °C. It was held there for 5 min, and then the reaction was allowed to cool to room temperature. GC and IR analysis showed the starting ether to be gone, and that the product was largely 2,3,4-trimethoxy-6-allylphenol. It weighed 34.4 g.
To a solution of 9.4 g KOH in 100 mL MeOH, there was added 33.3 g of 2,3,4-trimethoxy-6-allylphenol and 21.2 g methyl iodide and the mixture was held on the steam bath for 2 h. This was poured into aqueous base, and extracted with 3x100 mL CH2Cl2. Removal of the solvent from the pooled extracts gave 30 g of an amber oil residue that was distilled at 100-125 °C at 0.5 mm/Hg to provide 23.3 g of nearly colorless 2,3,4,5-tetramethoxyallylbenzene.
The total distillation fraction, 23.3 g 2,3,4,5-tetramethoxyallylbenzene, was dissolved in a solution of 25 g flaked KOH in 25 mL EtOH and heated at 100 °C for 24 h. The reaction mixture was poured into 500 mL H2O, and extracted with 2x100 mL CH2Cl2. The aqueous phase was saved. The pooled organic extracts were stripped of solvent under vacuum to give 13.8 g of a fluid oil that was surprising pure 2,3,4,5-tetramethoxypropenylbenzene by both GC and NMR analysis. The basic aqueous phase was acidified, extracted with 2x100 mL CH2Cl2, and the solvent stripped to give 7.5 g of an oil that was phenolic, totally propenyl (as opposed to allyl), and by infra-red the phenolic hydroxyl group was adjacent to the olefin chain. This crude 2-hydroxy-3,4,5-trimethoxypropenylbenzene was methylated with methyl iodide in alcoholic KOH to give an additional 5.6 g of the target 2,3,4,5-tetramethoxypropenylbenzene. This was identical to the original isolate above. The distilled material had an index of refraction, nD24 = 1.5409.
A well stirred solution of 17.9 g 2,3,4,5-tetramethoxypropenylbenzene in 80 mL distilled acetone was treated with 6.9 g pyridine, and cooled to 0 °C with an external ice bath. There was then added 14 g tetranitromethane over the course of a 0.5 min, and the reaction was quenched by the addition of a solution of 4.6 g KOH in 80 mL H2O. As the reaction mixture stood, there was a slow deposition of yellow crystals, but beware, this is not the product. This solid weighed 4.0 g and was the potassium salt of trinitromethane. This isolate was dried and sealed in a small vial. After a few days standing, it detonated spontaneously. The filtrate was extracted with 3x75 mL CH2Cl2, and the removal of the solvent from these extracts gave a residue of 20.8 g of crude 2-nitro-1-(2,3,4,5-tetramethoxyphenyl)propene which did not crystallize.
A solution was made of 20.3 g of the crude 2-nitro-1-(2,3,4,5-tetramethoxyphenyl)propene in 200 mL anhydrous Et2O, and this was filtered to remove some 2.7 g of insoluble material which appeared to be the potassium salt of trinitromethane by infra-red analysis. A suspension of 14 g LAH in 1 L anhydrous Et2O was stirred, placed under an inert atmosphere, and brought up to a gentle reflux. The above clarified ether solution of the propene was added over the course of 1 h, and the mixture was held at reflux for 24 h. After cooling, the excess hydride was destroyed by the cautious addition of 1 L 1.5 N H2SO4 (initially a drop or two at a time) and when the two phases were complete clear, they were separated. The aqueous phase was treated with 350 g potassium sodium tartrate, and brought to a pH >9 with base. This was extracted with 3x150 mL CH2Cl2, and the removal of the solvent from the pooled extracts gave a residue that was dissolved in 200 mL anhydrous Et2O, and saturated with anhydrous HCl gas. An Et2O-insoluble oil was deposited and, after repeated scratching with fresh Et2O, finally gave a granular white solid. This product was recrystallized from acetic anhydride, giving white crystals that were removed by filtration, Et2O washed, and air dried. The yield of 2,3,4,5-tetramethoxyamphetamine hydrochloride (TA) was 1.9 g and had a mp of 135.5-136.5 °C.
DOSAGE: probably above 50 mg.
DURATION: unknown.
QUALITATIVE COMMENTS: (with 30 mg) Definite threshold. There was eye dilation, and some unusual humor Q a completely wild day with chi-square calculations on the PDP-7 that were on the edge of bad taste. But I was definitely baseline in the afternoon during the Motor Vehicle Department interactions.
(with 35 mg) I had some gastric upset, but nonetheless there was a distinct intoxication. The next morning I had a foul headache.
EXTENSIONS AND COMMENTARY: This is pretty thin stuff from which to go out into a world that is populated by pharmacological sharks and stake out claims as to psychedelic potency. The structure of this molecule has everything going for it. It is an overlay of TMA (active) and TMA-2 (even more active) so it is completely reasonable that it should be doing something at a rational dosage. But that dosage might well be in the many tens of milligrams.
Tens of milligrams. Now there is a truly wishy-washy phrase. There is an art to the assignment of an exact number or, as is sometimes desperately needed, a fuzzy number, to a collection of things. In my youth (somewhere way back yonder in the early part of the century) I had been taught rules of grammer that were unquestionably expected of any well-educated person. If you used a Latin stem, you used a Latin prefix. And if you used a Greek stem, you used a Greek prefix. Consider a collection of things with simple geometric sides (a side is a latus in Latin). One would speak of a one-sided object as being unilateral, and a bilateral object has two sides. A trilateral, and quadrilateral, and way up there to multilateral objects, are referred to as having three or four or a lot of sides, respectively. Just the opposite occurs with geometric objects with faces. A face is a hedra in Greek, so one really should use the Greek structure. If one has just one face, one has a monohedron, a dihedron has two faces, and there are trihedron, tetrahedron, and polyhedron for things that have three, four, or a lot of faces. Actually, the prefix "poly" swings both ways. It was initially a Greek term, but as was the fate of many Greek words, it wandered its way from East to West, and ended up as a Latin term as well.
But back to the problem of how to refer to something that is more than one or two, but not as much as a lot? If you know exactly how many, you should use the proper prefix. But what if you don't know how many? There are terms such as "some." And there is "several." There is a "few" and a "number of" and "numerous" and "a hand full." One desperately looks for a term that is a collective, but which carries the meaning of an undefined number. There are English gems such as a pride of lions and a host of daffodils. But without a specific animal or plant of reference, one must have a target collective that is appropriate, to let the term "many" or "few" imply the proper size. There were many hundreds of persons (a few thousands of persons) at the rally. Several dozen hunters (a few score hunters) were gathered at the lake. A wonderful prefix is "oligo" which means a few, not a lot, and it means that I am not sure just how many are meant. Say, for example, that you have synthesized something in a biochemical mixture that contains three or four peptides. Di-and tri- and tetrapeptides are exact terms, but they do not describe what you have done. Polypeptide is way too big. However, an oligopeptide means that there are a few peptide units, I'm not sure how many. This may well be the most accurate description of just what you have.
I love the British modesty that is shown by hiding a person's physical weight by referring to it with the dimension known as the stone. This is, as I remember, something like 14 pounds. So, if stones were the weight equivalent of 10 milligrams, the activity of TA would be several stone. And since the synthetic intermediate 1-allyl-2,3,4,5-tetramethoxybenzene is one of the ten essential oils, the amination step from our hypothetical reaction in the human liver would make TA one of the so-called Ten Essential Amphetamines.
#146 3-TASB; 3-THIOASYMBESCALINE; 4-ETHOXY-3-ETHYLTHIO-5-METHOXYPHENETHYLAMINE
SYNTHESIS: Without any solvent, there was combined 21.7 g of solid 5-bromovanillin and 11.4 mL cyclohexylamine. There was the immediate generation of a yellow color and the evolution of heat. The largely solid mass was ground up under 50 mL of boiling IPA to an apparently homogeneous yellow solid which was removed by filtration and washed with IPA. There was thus obtained about 27 g of 3-bromo-N-cyclohexyl-4-hydroxy-5-methoxybenzylidenimine with a mp of 229-231 °C and which proved to be insoluble in most solvents (EtOH, CH2Cl2, acetone). A solution in dilute NaOH was unstable with the immediate deposition of opalescent white solids of the phenol sodium salt. A small scale recrystallization from boiling cyclohexanone yielded a fine yellow solid with a lowered mp (210-215 °C). Anal. (C14H18BrNO2) C,H.
A solution of 32.5 g 3-bromo-N-cyclohexyl-4-hydroxy-5-methoxybenzylidenimine in 60 mL of hot DMF was cooled to near room temperature, treated with 24.5 g ethyl iodide and followed by 14.0 g of flake KOH. This mixture was held at reflux for 1 h, cooled, and added to 1 L H2O. Additional base was added and the product was extracted with 3x150 mL CH2Cl2. These pooled extracts were washed with dilute NaOH, then with H2O, and finally the solvent was removed under vacuum. The crude amber-colored residue was distilled. The fraction coming over at 118-135 °C at 0.4 mm/Hg weighed 8.7 g, spontaneously crystallized, and proved to be 3-bromo-4-ethoxy-5-methoxybenzaldehyde, melting at 59-60 °C after recrystallization from MeOH. Anal. (C10H11BrO3) C,H. The fraction that came over at 135-155 °C at 0.2 mm/Hg weighed 10.5 g and also solidified in the receiver. This product was 3-bromo-N-cyclohexyl-4-ethoxy-5-methoxybenzylidenimine which, upon recrystallization from two volumes MeOH, was a white crystalline material with a mp of 60-61 °C. Anal. (C16H22BrNO2) C,H. The two materials have identical mps, but can be easily distinguished by their infra-red spectra. The aldehyde has a carbonyl stretch at 1692 cm-1, and the Schiff base a C=N stretch at 1641 cm-1.
A solution of 20.5 g 3-bromo-N-cyclohexyl-4-ethoxy-5-methoxybenzylidenimine in about 300 mL anhydrous Et2O was placed in a He atmosphere, well stirred, and cooled in an external dry ice acetone bath to -80 °C. There was then added 50 mL of 1.6 N butyllithium in hexane. The mixture became yellow and very viscous with the generation of solids. These loosened up with continuing stirring. This was followed by the addition of 10.7 g diethyldisulfide. The reaction became extremely viscous again, and stirring was continued while the reaction was allowed to warm to room temperature. After an additional 0.5 h stirring, the reaction mixture was added to 800 mL of dilute HCl. The Et2O phase was separated and the solvent removed under vacuum. The residue was returned to the original aqueous phase, and the entire mixture heated on the steam bath for 2 h. The bright yellow color faded and there was the formation of a yellowish phase on the surface of the H2O. The aqueous solution was cooled to room temperature, extracted with 3x100 mL CH2Cl2, the extracts pooled, washed first with dilute HCl, then with saturated brine, and the solvent removed under vacuum. The residue was an amber oil weighing 20.4 g, and was distilled at 130-140 °C at 0.3 mm/Hg to yield 12.9 g of 4-ethoxy-3-ethylthio-5-methoxybenzaldehyde as a straw colored oil that did not crystallize. Anal. (C12H16O3S) C,H.
A solution of 1.0 g 4-ethoxy-3-ethylthio-5-methoxybenzaldehyde in 20 g nitromethane was treated with about 0.2 g of anhydrous ammonium acetate and heated on the steam bath. TLC analysis showed that the aldehyde was substantially gone within 20 min and that, in addition to the expected nitrostyrene, there were four scrudge products (see the discussion of scrudge in the extensions and commentary section under 3-TSB). Removal of the excess nitromethane under vacuum gave an orange oil which was diluted with 5 mL cold MeOH but which could not be induced to crystallize. A seed was obtained by using a preparative TLC plate (20x20 cm) and removing the fastest moving spot (development was with CH2Cl2). Placing this in the above MeOH solution of the crude nitrostyrene allowed crystallization to occur. After filtering and washing with MeOH, 0.20 g of fine yellow crystals were obtained which melted at 75-77 °C. Recrystallization from MeOH gave a bad recovery of yellow crystals of 4-ethoxy-3-ethylthio-5-methoxy-'-nitrostyrene that now melted at 78.5-79 °C. Anal. (C13H17NO4S) C,H. This route was discarded in favor of the Wittig reaction described below.
A mixture of 27 g methyltriphenylphosphonium bromide in 150 mL anhydrous THF was placed under a He atmosphere, well stirred, and cooled to 0 °C with an external ice water bath. There was then slowly added 50 mL of 1.6 N butyllithium in hexane which resulted in the initial generation of solids that largely redissolved by the completion of the addition of the butyllithium and after allowing the mixture to return to room temperature. There was then added 11.7 g of 4-ethoxy-3-ethylthio-5-methoxybenzaldehyde without any solvent. There was the immediate formation of an unstirrable solid, which partially broke up into a gum that still wouldn't stir. This was moved about, as well as possible, with a glass rod, and then all was added to 400 mL H2O. The two phases were separated and the lower, aqueous, phase extracted with 2x75 mL of petroleum ether. The organic fractions were combined and the solvents removed under vacuum to give the crude 4-ethoxy-3-ethylthio-5-methoxystyrene as a pale yellow fluid liquid.
A solution of 10 mL of borane-methyl sulfide complex (10 M BH3 in methyl sulfide) in 75 mL THF was placed in a He atmosphere, cooled to 0 °C, treated with 21 mL of 2-methylbutene, and stirred for 1 h while returning to room temperature. This was added directly to the crude 4-ethoxy-3-ethylthio-5-methoxystyrene. The slightly exothermic reaction was allowed to stir for 1 h, and then the excess borane was destroyed with a few mL of MeOH (in the absence of air to avoid the formation of the dialkylboric acid). There was then added 19 g of elemental iodine followed, over the course of about 10 min, by a solution of 4 g NaOH in 50 mL hot MeOH. The color did not fade. Addition of another 4 mL 25% NaOH lightened the color a bit, but it remained pretty ugly. This was added to 500 mL H2O containing 5 g sodium thiosulfate and extracted with 3x100 mL petroleum ether. The extracts were pooled, and the solvent removed under vacuum to provide crude 1-(4-ethoxy-3-ethylthio-5-methoxyphenyl)-2-iodoethane as a residue.
To this crude 1-(4-ethoxy-3-ethylthio-5-methoxyphenyl)-2-iodoethane there was added a solution of 20 g potassium phthalimide in 150 mL anhydrous DMF, and all was held at reflux overnight. After adding to 500 mL of dilute NaOH, some 1.4 g of a white solid was generated and removed by filtration. The aqueous filtrate was extracted with 2x75 mL Et2O. These extracts were combined, washed with dilute HCl, and the solvent removed under vacuum providing 23.6 g of a terpene-smelling amber oil. This was stripped of all volatiles by heating to 170 °C at 0.4 mm/Hg providing 5.4 g of a sticky brown residue. This consisted largely of the desired phthalimide. The solids proved to be a purer form of 1-(4-ethoxy-3-ethylthio-5-methoxy)-2-phthalimidoethane and was recrystallized from a very small amount of MeOH to give fine white crystals with a mp of 107.5-108.5 °C. Anal. (C21H23NO4S) C,H. The white solids and the brown impure phthalimide were separately converted to the final product, 3-TASB.
A solution of 1.2 g of the crystalline 1-(4-ethoxy-3-ethylthio-5-methoxyphenyl)-2-phthalimidoethane in 40 mL of warm n-butanol was treated with 3 mL of 66% hydrazine, and the mixture was heated on the steam bath for 40 min. The reaction mixture was added to 800 mL dilute H2SO4. The solids were removed by filtration, and the filtrate was washed with 2x75 mL CH2Cl2. The aqueous phase was made basic with 25% NaOH, extracted with 3x75 mL CH2Cl2, and the solvent from these pooled extracts removed under vacuum yielding 6.2 g of a residue that was obviously rich in butanol. This residue was distilled at 138-144 C. at 0.3 mm/Hg to give 0.6 g of a colorless oil. This was dissolved in 2.4 mL IPA, neutralized with concentrated HCl, and diluted with 25 mL anhydrous Et2O. The solution remained clear for about 10 seconds, and then deposited white crystals. These were removed by filtration, washed with additional Et2O, and air dried to give 0.4 g 4-ethoxy-3-ethylthio-5-methoxyphenethylamine hydrochloride (3-TASB) with a mp of 140-141 °C. Anal. (C13H22ClNO2S) C,H. The amber-colored impure phthalimide, following the same procedure, provided another 0.9 g of the hydrochloride salt with a mp of 138-139 °C.
DOSAGE: about 160 mg.
DURATION: 10 - 18 h.
QUALITATIVE COMMENTS: (with 120 mg) This is no more than a plus one, and it didn't really get there until about the third hour. By a couple of hours later, I feel that the mental effects are pretty much dissipated, but there is some real physical residue. Up with some caution.
(with 160 mg) The taste is completely foul. During the first couple of hours, there was a conscious effort to avoid nausea. Then I noticed that people's faces looked like marvelous parodies of themselves and that there was considerable time slowing. There was no desire to eat at all. Between the eighth and twelth hour, the mental things drifted away, but the body was still wound up. Sleep was impossible until about 3:00 AM (the 18th hour of the experiment) and even the next day I was extremely active, anorexic, alert, excited, and plagued with occasional diarrhea. This is certainly a potent stimulant. The next night I felt the tensions drop, and finally got an honest and easy sleep. There is a lot of adrenergic push to this material.
EXTENSIONS AND COMMENTARY: No pharmacological agent has an action that is pure this or pure that. Some pain-killing narcotics can produce reverie and some sedatives can produce paranoia. And just as surely, some psychedelics can produce stimulation. With 3-TASB we may be seeing the shift from sensory effects over to out-and-out stimulation. It would be an interesting challenge to take these polyethylated phenethylamines and assay them strictly for their amphetamine-like action. Sadly, the potencies are by and large so low, that the human animal can't be used, and any sub-human experimental animal would not enable the psychedelic part of the equation to be acknowledged. If an order of magnitude of increased potency could be bought by some minor structural change, this question could be addressed. Maybe as the three-carbon amphetamine homologs, or as the 2,4,5- or 2,4,6- substitution patterns, rather than the 3,4,5-pattern used in this set.
#147 4-TASB; 4-THIOASYMBESCALINE; 3-ETHOXY-4-ETHYLTHIO-5-METHOXYPHENETHYLAMINE
SYNTHESIS: A solution of 20.5 g N,N,NU,NU-tetramethylethylenediamine and 22.3 g of 3-ethoxyanisole was made in 100 mL hexane under a He atmosphere with good stirring. There was added 125 mL 1.6 M butyllithium in hexane, which formed a white granular precipitate. This was cooled in an ice bath, and there was added 24.4 g of diethyldisulfide which produced an exothermic reaction and changed the precipitate to a creamy phase. After being held for a few min at reflux temperature, the reaction mixture was added to 500 mL dilute H2SO4 which produced two clear phases. The hexane phase was separated, and the aqueous phase extracted with 2x75 mL methylcyclopentane. The organics were combined, and the solvents removed under vacuum. There was obtained a residue which was distilled under a vacuum. At 0.3 mm/Hg the fraction boiling at 95-105 °C was a yellow liquid weighing 28.5 g which was largely 3-ethoxy-2-(ethylthio)anisole which seemed to be reasonably pure chromatographically. It was used as such in the bromination step below.
To a stirred solution of 15.0 g of 3-ethoxy-2-(ethylthio)anisole in 100 mL CH2Cl2 there was added 12 g elemental bromine dissolved in 25 mL CH2Cl2. There was the copious evolution of HBr. After stirring at ambient temperature for 3 h, the dark solution was added to 300 mL H2O containing sodium dithionite. Shaking immediately discharged the residual bromine color, and the organic phase was separated, The aqueous phase was extracted once with 100 mL CH2Cl2, the pooled extracts washed with dilute base, and then the solvent was removed under vacuum to give a light brown oil. This wet product was distilled at 112-122 °C at 0.3 mm/Hg to yield 4-bromo (and/or 6-bromo)-3-ethoxy-2-(ethylthio)anisole as a light orange oil. This was used in the following benzyne step without separation into its components.
To a solution of 36 mL diisopropylamine in 150 mL anhydrous THF under a He atmosphere, and which had been cooled to -10 °C with an external ice/MeOH bath, there was added 105 mL of a 1.6 M solution of butylithium in hexane. There was then added 5.1 mL of dry CH3CN followed by the dropwise addition of 15.0 g 4-bromo-(and/or 6-bromo)-3-ethoxy-2-(ethylthio)anisole diluted with a little anhydrous THF. There was an immediate development of a dark red-brown color. The reaction was warmed to room temperature and stirred for 0.5 h. This was then poured into 600 mL of dilute H2SO4. The organic phase was separated, and the aqueous fraction extracted with 2x50 mL CH2Cl2. These extracts were pooled and the solvent removed under vacuum. The residue was a dark oil and quite complex as seen by thin layer chromatography. This material was distilled at 0.3 mm/Hg yielding two fractions The first boiled at 112-125 °C and weighed 3.9 g. It was largely starting bromo compound with a little nitrile, and was discarded. The second fraction distilled at 130-175 °C and also weighed 3.9 g. This fraction was rich in the product 3-ethoxy-4-ethylthio-5-methoxyphenylacetonitrile, but it also contained several additional components as seen by thin layer chromatographic analysis. On standing for two months, a small amount of solid was laid down which weighed 0.5 g after cleanup with hexane. But even it consisted of three components by TLC, none of them the desired nitrile. The crude fraction was used for the final step without further purification or microanalysis.
A solution of LAH in anhydrous THF under N2 (15 mL of a 1.0 M solution) was cooled to 0 °C and vigorously stirred. There was added, dropwise, 0.40 mL 100% H2SO4, followed by about 3 g of the crude 3-ethoxy-4-ethylthio-5-methoxyphenylacetonitrile diluted with a little anhydrous THF. The reaction mixture was stirred until it came to room temperature, and then held at reflux on the steam bath for 2 h. After cooling to room temperature, there was added IPA to destroy the excess hydride (there was quite a bit of it) and then 15% NaOH to bring the reaction to a basic pH and convert the aluminum oxide to a loose, white, filterable consistency. This was removed by filtration, and washed first with THF followed by IPA. The filtrate and washes were stripped of solvent under vacuum, the residue added to 100 mL dilute H2SO4. This was washed with 2x75 mL CH2Cl2, made basic with 25% NaOH, and extracted with 2x50 mL CH2Cl2. After combining, the solvent was removed under vacuum providing a residue that was distilled. A fraction boiling at 122-140 °C at 0.3 mm/Hg weighed 1.0 g and was a colorless oil. This was dissolved in 10 mL of IPA, and neutralized with 20 drops of concentrated HCl and diluted, with stirring, with 40 mL anhydrous Et2O. There was the slow formation of a fine white crystalline salt, which was removed by filtration, washed with Et2O, and air dried. The product 3-ethoxy-4-ethylthio-5-methoxyphenethylamine hydrochloride (4-TASB), weighed 0.5 g, and had a mp 139-140 °C. Gas chromatographic analysis by capillary column chromatography of the free base (in butyl acetate solution on silica SE-54) showed a single peak at a reasonable retention time, verifying isomeric purity of the product. Anal. (C13H22ClNO2S) C,H.
DOSAGE: 60 - 100 mg.
DURATION: 10 - 15 h.
QUALITATIVE COMMENTS: (with 60 mg) The compound has a petroleum-refinery type taste. There was a looseness of the bowels as I got into it. Here we have another of these 'What is it' or 'What isn't it' compounds. Somehow I seemed to have to push the erotic, the visual, the whole psychedelic shmeer, to document that this was indeed effective. I am not impressed.
(with 100 mg) There were some trivial physical problems during the early stages of this experiment. But there was fantasy stuff to music, and some jumpy stuff to music. Is there a neurological hyperreflexia? I was able to sleep at the 12 hour point but I felt quite irritable. I am agitated. I am twitchy. This has been very intense, and I am not completely comfortable yet. Let's wait for a while.
(with 100 mg) Music was lovely during the experiment, but pictures were not particularly exciting. I had feelings that my nerve-endings were raw and active. There was water retention. There was heartbeat wrongness, and respiration wrongness. During my attempts to sleep, my eyes-closed fantasies became extremely negative. I could actually feel the continuous electrical impulses travelling between my nerve endings. Disturbing. There was continuous erotic arousability, and this seemed to be part of the same over-sensitivity of the nervous system; orgasm didn't soothe or smooth out the feeling of vulnerability. This is a very threatening material. DO NOT REPEAT.
EXTENSIONS AND COMMENTARY: Again, another drug with more physical problems than psychic virtue, but with no obvious structural feature to hang it all onto. Some day this will all make sense°
#148 5-TASB; 5-THIOASYMBESCALINE; 3,4-DIETHOXY-5-METHYLTHIOPHENETHYLAMINE
SYNTHESIS: A solution of 11.5 g 3-bromo-N-cyclohexyl-4,5-diethoxybenzylidinimine (see under ASB for its preparation) in 150 mL anhydrous Et2O was placed in a He atmosphere, well stirred, and cooled in an external dry ice/acetone bath to -80 °C. There was light formation of fine crystals. There was then added 25 mL of 1.6 N butyllithium in hexane and the mixture stirred for 15 min. This was followed by the addition of 4.3 mL dimethyldisulfide over the course of 20 min, during which time the solution became increasingly cloudy and then thinned out again. The mixture was allowed to come to room temperature over the course of an additional h, and then added to 400 mL of dilute HCl. There was the generation of a lot of yellow solids, and the Et2O phase was almost colorless. This was separated, the solvent removed under vacuum, and the residue combined with the original aqueous phase. This phase was then heated on the steam bath for 2 h. The aqueous solution was cooled to room temperature, extracted with 3x100 mL CH2Cl2, the extracts pooled, washed with H2O, and the solvent removed under vacuum to yield 9.4 g of an amber oil which spontaneously crystallized. This was distilled at 125-132 °C at 0.2 mm/Hg to yield 7.1 g of 3,4-diethoxy-5-(methylthio)benzaldehyde as a white oil that spontaneously crystallized. The crude product had a mp of 73-74 °C that actually decreased to 72-73 °C after recrystallization from MeOH. Anal. (C12H16O3S) C,H.
A solution of 16.2 g methyltriphenylphosphonium bromide in 200 mL anhydrous THF was placed under a He atmosphere, well stirred, and cooled to 0 °C with an external ice water bath. There was then added 30 mL of 1.6 N butyllithium in hexane which resulted in the generation of a clear yellow solution. The reaction mixture was brought up to room temperature, and 7.0 g 3,4-diethoxy-5-(methylthio)benzaldehyde in 50 mL THF was added dropwise, dispelling the color, and the mixture was held at reflux on the steam bath for 1 h. The reaction was quenched in 800 mL H2O, the top hexane layer separated, and the aqueous phase extracted with 2x75 mL of petroleum ether. The organic fractions were combined and the solvents removed under vacuum to give 12.0 g of the crude 3,4-diethoxy-5-methylthiostyrene as a pale amber-colored oil.
A solution of 6.0 mL of borane-methyl sulfide complex (10 M BH3 in methyl sulfide) in 45 mL THF was placed in a He atmosphere, cooled to 0 °C, treated with 12.6 g of 2-methylbutene, and stirred for 1 h while returning to room temperature. To this there was added a solution of the impure 3,4-diethoxy-5-methylthiostyrene in 25 mL THF. This was stirred for 1 h during which time the color deepened to a dark yellow. The excess borane was destroyed with about 2 mL MeOH (all this still in the absence of air). There was then added 11.4 g elemental iodine followed by a solution of 2.4 g NaOH in 30 mL of boiling MeOH, added over the course of 10 min. This was followed by sufficient 25% NaOH to discharge the residual iodine color (about 4 mL was required). The reaction mixture was added to 500 mL water, and sodium hydrosulfite was added to discharge the remaining iodine color (about 4 g). This was extracted with 3x100 mL petroleum ether, the extracts pooled, and the solvent removed under vacuum to provide 25.9 g of crude 1-(3,4-diethoxy-5-methylthiophenyl)-2-iodoethane as a pale yellow fluid oil. Thin layer chromatographic analysis of this material on silica gel plates (using a 90:10 mixture of CH2Cl2/methylcyclopentane as solvent) showed largely the iodo-product (Rf 0.9) with no visible starting aldehyde (Rf 0.7).
To this crude 1-(3,4-diethoxy-5-methylthiophenyl)-2-iodoethane there was added a solution of 12 g potassium phthalimide in 90 mL anhydrous DMF, and all was held at reflux in a heating mantle. The reaction progress was followed by TLC, and at 1.5 h it was substantially complete. After adding to 500 mL 5% NaOH, the organic phase was separated, and the aqueous phase was extracted with 2x75 mL Et2O. The organic fractions were combined, and the solvent removed under vacuum providing 19.3 g of an amber oil. The residual volatiles were removed by distillation up to 170 °C at 0.2 mm/Hg. The distillate weighed 7.0 g and contained little if any phthalimide by TLC. The pot residue was a viscous amber oil, and also weighed 7.0 g. About half of this was employed in the following hydrolysis step, and the rest was rubbed under an equal volume of MeOH providing 1-(3,4-diethoxy-5-methylthiophenyl)-2-phthalimidoethane as a white solid. A small sample was recrystallized from an equal volume of MeOH to give white crystals with a mp of 79.5-81 °C. Re-recrystallization from MeOH produced an analytical sample with a mp of 83-84 °C. Anal. (C21H23NO4S) C,H.
A solution of 3.2 g of the impure 1-(3,4-diethoxy-5-methylthiophenyl)-2-phthalimidoethane in 150 mL of n-butanol there was added 20 mL of 66% hydrazine, and the mixture was heated on the steam bath for 2 h. This was added to 600 mL of dilute H2SO4, and the two layers were separated. The butanol layer was extracted with 2x100 mL dilute H2SO4. These extracts were added to the original aqueous phase, and this was washed with 3x75 mL CH2Cl2. This was then made basic with 5% NaOH, extracted with 3x75 mL CH2Cl2, and the solvent from these pooled extracts removed under vacuum. The residue (which weighed 9.7 g and contained much butanol) was distilled at 140-145 °C at 0.3 mm/Hg to give 0.7 g of a colorless oil. This was dissolved in 3.0 mL IPA, neutralized with concentrated HCl, and diluted with 12 mL anhydrous Et2O to give a solution that immediately crystallized to provide white crystals of 3,4-diethoxy-5-methylthiophenethylamine hydrochloride (5-TASB). These weighed 0.7 g after washing with Et2O and drying to constant weight. The mp was 182-183 °C, and an analytical sample was dried at 100 °C for 24 h. Anal. (C13H22ClNO2S) C,H.
DOSAGE: about 160 mg.
DURATION: about 8 h.
QUALITATIVE COMMENTS: (with 120 mg) Maybe there is something at about hour 5. My talking with innocent people had hints of strangeness. And there was the slightest suggestion of some physical effect. Call it an overall (+).
(with 160 mg) I am immediately warm at the extremities. An awareness grows upon me for a couple of hours. I am a little light-headed, and I feel that there is more physical than there is mental, and it is not all entirely nice. I am slightly hyperreflexive, and there is a touch of diarrhea. I am happy that I held this at 160 milligrams. I am mentally flat at the eighth hour, although there are some physical residues. The effects are real, but I don't want to go higher. Some trace physical memory seems to stay with me as a constant companion.
EXTENSIONS AND COMMENTARY: There is a ponderousness about adding a couple of ethyl groups and a sulfur that seems to say, Rno fun. 5-TASB has something going for it (but not much) and 3-TASB is quite a bit more peppy and, actually, 4-TASB has quite a bit of life. But there is a sense of Rwhy bother?S There were a couple of bouts of light-headedness, but there was no unexpected excitement discovered in this methodical study. No surprises. Keep the chain lengths down.
#149 TB; 4-THIOBUSCALINE; 3,5-DIMETHOXY-4-(n)-BUTYLTHIOPHENETHYLAMINE
SYNTHESIS: A solution was made of 12.1 g N,N,NU,NU-tetramethylethylenediamine and 13.8 g of 1,3-dimethoxybenzene in 200 mL 30-60 °C petroleum ether. This was stirred vigorously under a He atmosphere and cooled to 0 °C with an external ice bath. There was added 66 mL of 1.6 M butyl lithium in hexane which produced a white granular precipitate. The reaction mixture was brought up to room temperature for a few minutes, and then cooled again to 0 °C. There was then added 18.7 g of di-(n)-butyl disulfide (this reagent was quite yellow, but was used without any purification) which changed the granular precipitate to a strange salmon color. Stirring was continued while the reaction mixture was brought up to room temperature and finally up to reflux. The reaction mixture was then added to 600 mL of dilute H2SO4. The two phases were separated, and the aqueous phase extracted with 2x75 mL Et2O. The organic phases were combined and the solvent removed under vacuum. The residue weighed 33.0 g and was a dark yellow oil. Efforts to remove this color by reductive extraction of a CH2Cl2 solution with aqueous sodium hydrosulfite were futile. The residue was distilled at 0.3 mm/Hg to give two fractions. The first boiled at 95-115 °C, weighed 4.1 g and was largely recovered dibutyl disulfide. The product 2-(n)-butylthio-1,3-dimethoxybenzene boiled at 115-135 °C and weighed 19.5 g. It was a pale amber oil that could not be induced to crystallize. Anal. (C12H18O2S) C,H.
To a stirred solution of 19.5 g of 2-(n)-butylthio-1,3-dimethoxybenzene in 75 mL CH2Cl2 there was added 14.5 g elemental bromine dissolved in 75 mL CH2Cl2. The evolution of HBr was evident, but the reaction was not exothermic. The reaction was allowed to stir for 1 h and then heated briefly to a reflux on the steam bath. It was then washed with H2O containing sodium hydrosulfite which discharged the residual color. After washing with saturated brine, the solvent was removed under vacuum leaving 26.0 g of a pale amber oil. This was distilled at 120-140 °C at 0.4 mm/Hg yielding 4-bromo-2-(n)-butylthio-1,3-dimethoxybenzene as a yellow-orange oil. It could not be crystallized. Anal. (C12H17BrO2S) C,H.
To a solution of 11.5 mL diisopropylamine in 50 mL hexane that was stirred under N2 there was added 50 mL of 1.6 M butyllithium. After 15 min stirring, the reaction mixture became very viscous, and it was diluted with 150 mL anhydrous THF. After cooling in an ice bath there was added 2.0 mL CH3CN followed in 1 min with 6.0 g of 4-bromo-2-(n)-butylthio-1,3-dimethoxyanisole a bit at a time over the course of 1 min. There was the immediate formation of a deep red color. After stirring for 0.5 h, the mixture was poured into dilute H2SO4. The organic layer was separated, and the aqueous layer extracted with 3x75 mL CH2Cl2. These extracts were pooled, dried with anhydrous K2CO3, and the solvent was removed under vacuum. The residue was distilled at 0.25 mm/Hg and yielded two fractions. The first fraction boiled at 125-145 °C, weighed 0.8 g and was discarded. The second fraction came over at 145-175 °C as a light yellow oil and weighed 2.2 g. This product, 4-(n)-butylthio-3,5-dimethoxyphenylacetonitrile, was reduced as such without further purification or analysis.
A solution of LAH under N2 (20 mL of a 1 M solution in anhydrous THF) was cooled to 0 °C and vigorously stirred. There was added, dropwise, 0.53 mL 100% H2SO4, followed by 2.0 g 4-(n)-butylthio-3,5-dimethoxyphenylacetonitrile in 10 mL anhydrous THF. The reaction mixture was stirred at 0 °C for a few min, then brought to room temperature for 1 h, and finally to a reflux for 1 h on the steam bath. After cooling back to room temperature, there was added IPA (to destroy the excess hydride) followed by 10% NaOH which brought the reaction to a basic pH and converted the aluminum oxides to a loose, white, filterable consistency. These were removed by filtration, and washed with THF and IPA. The filtrate and washes were stripped of solvent under vacuum, the residue was suspended in 150 mL of dilute NaOH and extracted with 3x100 CH2Cl2. These extracts were pooled and extracted with 2x75 mL diluteH2SO4. Emulsions required that a considerable additional quantity of H2O be added. The aqueous phase was made basic, and extracted with 2x100 mL CH2Cl2. After combining these extracts, the solvent was removed under vacuum providing a residue that was distilled. The product distilled at 138-168 °C at 0.4 mm/Hg as a white oil weighing 0.7 g. This was dissolved in a small amount of IPA, neutralized with concentrated HCl and, with continuous stirring, diluted with several volumes of anhydrous Et2O. After filtering, Et2O washing, and air drying, 4-(n)-butylthio-3,5-dimethoxyphenethylamine hydrochloride (TB) was obtained, weighed 0.6 g, and had a mp of 154-155 °C. Anal. (C14H24ClNO2S) C,H.
DOSAGE: 60 - 120 mg.
DURATION: about 8 h.
QUALITATIVE COMMENTS: (with 35 mg) I was aware of something at about an hour, and it developed into a benign and beautiful experience which never quite popped into anything psychedelic. At the fifth hour there was a distinct drop, and I made what might be thought of as a foolish effort to rekindle the state with an additional 20 milligrams but it was too little and too late. There was no regeneration of anything additional.
(with 60 mg) A very subtle threshold, probably, and six hours into it there seems to have been little if any effect. My memory of it is not that certain and now I am not sure that there had been anything at all.
(with 80 mg) I am vaguely aware of something. The body discomfort may reflect the use of sardines in tomato sauce for lunch, but still things are not quite right. Five hours into it I am still in a wonderful place spiritually, but there seem to be some dark edges. I might be neurologically sensitive to this.
(with 120 mg) The course of the action of this is extremely clear. The development was from 5 PM to 7 PM [the experiment started at 4 PM] and by 10 PM I was dropping and by midnight I went to bed and slept well. Food was not too interesting, and a glass of wine before sleeping produced no noticeable effect. This was an uneventful experience that never really made it off the ground. It was pleasant, but certainly not psychedelic.
EXTENSIONS AND COMMENTARY: There is a term "dose-dependent" in pharmacology. When there is a complex action produced by a drug, then each of the components of this mixture of effects should be expected to become more intense following a bigger dose of the drug. This is certainly true with most of the actions of psychoactive drugs.
As to the psychedelic aspects of some drugs, there can be visual effects, eyes-open (edge-ripples or colors or retinal games) or eyes-closed (images of the elaborately decorated doors of the mosque, or of an orchestra floating suspended by its music) or fantasy (you are moving beyond the confines of your body and invading someone else's space). The same applies to tactile enhancement, to the anaesthetic component, to the depth of insight realized from a drug. The more the drug, as a rule, the more the effect, up to the point that new and disruptive effects are realized. This latter is called toxicity.
As to the stimulant component, the same is true. The person gets wired up, and there is no sleep because there is no hiding from a cascade of images and meanings, and the body lies there unwilling to yield guard since both the pounding heart and the interpretive psyche are demanding attention. These aspects also intensify with increasingly higher doses.
But an exception to this is the euphoria-producing aspect of a drug. One sees with increasing doses a continuing "threshold" that makes you aware, that fluffs the senses, but which seems not, at any level, to take over or to command the ship. It is truly a catalytic on or off. You are or you are not. In the "Tomso" effect, this action is produced by alcohol. There is disinhibition with alcohol which allows a central intoxication from the drug TOMSO regardless of the amount of drug used (see under TOMSO). One sees again, here with TB, the case of a perpetual series of "thresholds." Never the psychedelic or the stimulant action that increases with increased dose. Always the simple and ephemeral catalyst of euphoria without substance and without body. It is a compound that can never be pinned and labeled in the butterfly collection since it defies an accepted classification.
This action was seen first with the compound called ARIADNE and when it was called an anti-depressant, it proved to be commercially interesting. It is fully possible that TB would be of value to certain depressed people in exactly the same way.