Copy Link
Add to Bookmark
Report

uninformed 05 03

eZine's profile picture
Published in 
Uninformed
 · 4 years ago

  

Effective Bug Discovery
9/2006
vf
vf@nologin.org


"If we knew what it was we were doing, it would not be
called research, would it?"

- Albert Einstein


1) Foreword

Abstract: Sophisticated methods are currently being developed and
implemented for mitigating the risk of exploitable bugs. The process of
researching and discovering vulnerabilities in modern code will require
changes to accommodate the shift in vulnerability mitigations. Code
coverage analysis implemented in conjunction with fuzz testing reveals
faults within a binary file that would have otherwise remained
undiscovered by either method alone. This paper suggests a research
method for more effective runtime binary analysis using the
aforementioned strategy. This study presents empirical evidence that
despite the fact that bug detection will become increasingly difficult
in the future, analysis techniques have an opportunity to evolve
intelligently.

Disclaimer: Practices and material presented within this paper are meant
for educational purposes only. The author does not suggest using this
information for methods which may be deemed unacceptable. The content in
this paper is considered to be incomplete and unfinished, and therefore
some information in this paper may be incorrect or inaccurate.
Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, requires prior specific
permission.

Prerequisites: For an in-depth understanding of the concepts presented
in this paper, a familiarity with Microsoft Windows device drivers,
working with x86 assembler, debugging fundamentals, and the Windows
kernel debugger is required. A brief introduction to the current state
of code coverage analysis, including related uses, is introduced to
support information presented within this paper. However, to implement
the practices within this paper a deeper knowledge of aforementioned
vulnerability discovery methods and methodologies are required. The
following software and knowledge of its use is required to follow along
with the discussion: IDAPro, Debugging tools for Windows, Debug Stalk,
and a virtual machine such as VMware or Virtual PC.

Thanks: The author would like to thank west, icer, skape, Uninformed,
and mom.


2) Introduction


2.1) The status of vulnerability research

Researchers employ a myriad of investigative techniques in the quest for
vulnerabilities. In any case, there exists no silver bullet for the
discovery of security related software bugs, not to mention the fact
that several new security oriented kernel-mode components have recently
been integrated into Microsoft operating systems that can make
vulnerability investigations more difficult. Vista, particularly on the
64-bit edition, is integrating several mechanisms including driver
signing, Secure Bootup using a TPM hardware chip, PatchGuard,
kernel-mode integrity checks, and restricted user-mode access to . The
Vista kernel also has an improved Low Fragmentation Heap and Address
Space Layout Randomization. In later days, bugs were revealed via dumb
fuzzing techniques, whereas this year more complicated bugs are
indicating that knowledge of the format would require advanced
understanding of a parser. Because of this, researchers are moving
towards different discovery methods such as intelligent, rather than
dumb, testing of drivers and applications.


2.2) The problem with fuzzing

To compound the conception that these environments are becoming more
difficult to test, monolithic black box fuzz testing, while frequently
efficacious in its purpose, has a tendency for a exhibiting a lack of
potency. The term ``monolithic'' is included as a reference to a
comprehensive execution of the entire application or driver. Fuzzing is
often executed in an environment where the tester does not know the
internals of the binary in question. This leads to disadvantages in
which a large number of tests must be executed to get an accurate
estimate of binary's reliability. This investigation can be a daunting
task if not implemented in a constructive manner. The test program and
data selection should ensure independence from unrelated tests or groups
of tests, thereby gaining the ability of complete coverage by reducing
dependency on specific variables and their decision branching.

Another disadvantage of monolithic black box fuzz testing is that it is
difficult to provide coverage analysis even though the testing selection
may cover the entire suite of security testing models. A further
complication in this nature of testing is of cyclic dependency causing
cyclic arguments which in turn leads to a lessening of coverage
assurance.


2.3) Expectations

This paper aims to educate the reader on the espousal of code coverage
analysis and fuzzing philosophy presented by researchers as a means to
lighten the burden of bug detection. A kernel mode device driver will be
fuzzed for bugs using a standard fuzzing method. Results from the
initial fuzzing test will be examined to determine coverage. The fuzz
testing method will be revised to accommodate coverage concerns and an
execution graph is generated to view the results of the previous
testing. A comparison is then made between the two prior testing
methods, proving how effective code coverage analysis through kernel
mode Stalking can improve fuzzing endeavors.


3) QA

Before understanding how the methodologies presented in this paper can
be used, a few simple definitions and descriptions are addressed for the
benefit of the reader.


3.1) What is code coverage?

Code coverage, as represented by a Control Flow Graph (CFG), is defined
as a measure of the exercised code within a program undergoing software
testing. For the purpose of vulnerability research, the goal is to
utilize code coverage analysis to obtain an exhaustive execution of all
possible paths through code and data flow that may be relevant for
revealing failures. It is used as a good metric in determining how a
specific set of tests can uncover numerous faults. Techniques of proper
code coverage analysis presented in this paper utilize basic
mathematical properties of graph theory by including elements such as
vertices, links and edges. Graph theory has lain somewhat dormant until
recently being utilized by computer scientists which have subsequently
defined their own sets of vocabulary for the subject. For the sake of
research continuity and to link mathematical to computer science
definitions, the verbiage used within this paper will equate vertices to
code blocks, branches to decisions, and edges to code paths.

To support our hypothesis, the aforementioned graph theory elements are
compiled into CFGs. Informally, a Control Flow Graph is a directed graph
composed of a finite set of vertices connected by edges indicating all
possible routes a driver or application may take during execution. In
other words, a CFG is merely blocks of code whose connected flow paths
are determined by decisions. Block execution consists of a sequence of
instructions which are free of branching or other control transfers
except for the last instruction. These include branches or decisions
which consist of Boolean expressions in a control structure. A path is a
sequence of nodes traveled through by a series of uninterrupted links.
Paths enable flow of information or data through code. In our case, a
path is an execution flow and is therefore essential to measuring code
coverage. Because of this factor, this investigation focuses directly on
determining which paths have been traversed, which blocks and
correlating data have been executed, and which links have been followed
and finally applying it to fuzzing techniques.

The purpose of code coverage analysis is ultimately to require all
control decisions to be exercised. In other words, the application
needs to be executed thoroughly using enough inputs that all edges in
the graph are traversed at least once. These graphs will be represented
as diagrams in which blocks are squares, edges are lines, and paths are
colored.


4) Hypothesis: Code Coverage and Fuzzing

In the security arena, fuzzing has traditionally manifested potential
security holes by throwing random garbage at a target, hoping that any
given code path will fail in the process of consuming the aforementioned
data. The possibility of execution flowing through a particular block in
code is the sum of probabilities of the conditional branches leading to
blocks. In simplicity, if there are areas of code that are never
executed during typical fuzz testing, then administering code coverage
methodologies will reveal those unexecuted branches. Graphical code
coverage analysis using CFGs helps determine which code path has been
executed even without the use of symbol tables. This process allows the
tester to more easily identify branch execution, and to subsequently
design fuzz testing methods to properly attain complete code coverage.
Prior experiments driven at determining the effectiveness of code
coverage techniques identify that ensuring branch execution coverage
will improve the likelihood of discovery of binary faults.


4.1) Process and Kernel Stalking

One of the more difficult questions to answer when testing software for
vulnerabilities is: ``when is the testing considered finished?'' How do
we, as vulnerability bug hunters, know when we have completed our
testing cycle by exhausting all code paths and discovering all possible
bugs? Because fuzz testing can easily be random, so unpredictable, the
question of when to conclude testing is often left incomplete.

Pedram Amini, who recently released ``Paimei'', coined the term "Process
Stalking" as a set of runtime binary analysis tools intended to enhance
the visual effect of runtime analysis. His tool includes an IDA Pro
plug-in paired with GML graph files for easy viewing. His strategy
amalgamates the processes of runtime profiling through tracing and state
mapping, which is a graphic model composed of behavior states of a
binary. Pedram Amini's "Process Stalker" tool suite can be found on his
personal website (http://pedram.redhive.com) and the reverse engineering
website OpenRCE (http://www.openrce.org). -- might just use references
or something. The fact that process stalker is used to reverse MS Update
patches is irrelevant to the paper.


4.2) Stalking and Fuzzing Go Hand in Hand

Process Stalker was transformed by an individual into a windbg extension
for use in debugging user-mode and kernel-mode scenarios. This tool was
given the title ``Debug Stalk,'' and until now this tool has remained
unreleased. Process and Debug Stalker have overcome the static analysis
visualization setback by implementing runtime binary analysis. Runtime
analysis using Process and Debug Stalking in conjunction with
mathematically enhanced CFGs exponentially improves the bug hunting
mechanisms using fuzz techniques. Users can graphically determine via
runtime analysis which paths have not been traversed and which blocks
have not been executed. The user then has the opportunity to refine
their testing approach to one that is more effective. When testing a
large application, this technique dramatically reduces the overall
workload of said scenarios. Therefore, iterations of the Process Stalk
tool and the Debug Stalk tool will be used for investigating a faulty
driver in this paper.

Debug Stalk is a Windows debugger plug-in that can be used in places
where Process Stalking may not be suited, such as in a kernel-mode
setting.


5) Implementation

For the mere sake of simple illustration, several tools have been
created for testing our code coverage theories. Some of the test cases
have been exaggerated and are not real world examples. This testing
implementation is broken down into three parts: Part I includes sending
garbage to the device driver with dumb fuzzing; Part II will include
smarter fuzzing; Part III is a breakdown of how an intelligent level of
fuzzing helps improve code coverage while testing. First, a very simple
device driver named pluto.sys was created for the purpose of this paper.
It contains several blocks of code with decision based branching that
will be fuzzed. The fuzzer will send iterations of random data to
pluto.sys. After fuzzing has completed, a post-analysis tool will review
executed code blocks within the driver. Part II will contain the same
process as Part I, however, it will include an updated fuzzer based on
our Part I post-analysis that will allow the driver to call into a
previously unexecuted code region. Part III uses the data collected in
Parts I and II as illustrative example of a proof of a beneficiary code
coverage thesis.


5.1) Stalking Setup

Several software components need to be acquired before Stalking can
begin: the Debug Stalk extension, Pedram's Process Stalker, Python, and
the GoVisual Diagram Editor (GDE). Pedram's Stalker is listed on both
his blog and on the OpenRCE website. The Process Stalker contains files
such as the IDA Pro plug-in, and Python scripts that generate the GML
graph files that will be imported into GDE. GDE provides a functional
mechanism for editing and positioning of graphs including clustered
graphing, creation and deletion of nodes, zooming and scrolling,
automatic graph layout. Components can be obtained at the following
locations:

GDE: http://www.oreas.com/gde_en.php
Python: http://www.python.org/download
Proc Stalker: http://www.openrce.org/downloads/details/171/Process Stalker
Debug Stalk: http://www.nologin.org/code


5.2) Installing the Stalker

A walkthrough of installation for Process Stalker and required
components will be covered briefly in this document, however, more
detailed steps and descriptions are provided in Pedram's supporting
manual. The .bpl file generated by the IDA plug-in will spit out a
breakpoint list for entries within each block. The IDA plug-in
processstalker.plw must be inserted into the IDA Pro plug-ins directory.
Restarting IDA will allow the application to load the plug-in. A
successful installation of the IDA plug-in in the log window will be
similar to the following:


[*] pStalker> Process Stalker – Profiler
[*] pStalker> Pedram Amini <pedram.amini@gmail.com>
[*] pStalker > Compiled on Sep 21 2006


Generating a .bpl file can be started by pressing Alt+5 within the IDA
application. A dialog appears. Make sure that ``Enable Instruction
Colors,'' ``Enable Comments,'' and ``Allow Self Loops'' are all
selected. Pressing OK will prompt for a ``Save as'' dialog. The .bpl
file must be named relative to its given name. For example, if calc.exe
is being watched, the file name must be calc.exe.bpl. In our case,
pluto.sys is being watched, so the file name must be pluto.sys.bpl. A
successful generation of a .bpl file will produce the following output
in the log window:


talker> Profile analysis 25% complete.
[*] pStalker> Profile analysis 50% complete.
[*] pStalker> Profile analysis 7% complete.
[*] pStalker> Profile analysis 100% complete.


Opening the pluto.sys.bpl file will show that records are colon
delimited:


pluto.sys:0000002e:0000002e
pluto.sys:0000006a:0000006a
pluto.sys:0000007c:0000007c


5.3) Installing Debug Stalk


The Debug Stalk extension can be built as follows. Open the Windows
2003 Server Build Environment window. Set the DBGSDK_INC_PATH and
DBGSDK_LIB_PATH environment variables to specify the paths to the
debugger SDK headers and the debugger SDK libraries, respectively. If
the SDK is installed at c:\WINDBGSDK, the following would work:


set DBGSDK_INC_PATH=c:\WINDBGSDK\inc
set DBGSDK_LIB_PATH=c:\WINDBGSDK\lib


This may vary depending on where the SDK is installed. The directory
name must not contain a space (' ') in its path. The next step is to
change directories to the project directory. If Debug Stalk source
code is placed within the samples directory within the SDK (located
at c:\WINDBGSDK), then the following should work:


cd c:\WINDBGSDK\samples\dbgstalk-0.0.18


Typing build -cg at the command line to build the Debug Stalk project.
Copy the dbgstalk.dll module from within this distribution to the root
folder of the Debugging Tools for Windows root directory. This is the
folder containing programs like cdb.exe and windbg.exe. If you have a
default installation of "Debugging tools for Windows" already installed,
the following should work:


copy dbgstalk.dll "c:\Program Files\Debugging Tools for Windows\"


The debugger plug-in should be installed at this point. It is important
to note that Debug Stalk is a fairly new tool and has some reliability
issues. It is a bit flakey and some hacking may be necessary in order to
get it running properly.


5.4) Stalking with Kernel Debug


5.4.1) Part I

For testing purposes, a Microsoft Operating System needs to be set up
inside of a Virtual PC environment. Load the pluto.sys driver inside of
the Virtual PC and attach a debug session via Kernel Debug (kd). Once kd
is loaded and attached to a process within the Virtual Machine, Debug
Stalk can be invoked by calling "!dbgstalk.dbgstalk [switches] [.bpl
file path]" at the kd console. For example:


C:\Uninformed>kd -k com:port=\\.\pipe\woo,pipe

Microsoft (R) Windows Debugger Version 6.6.0007.5
Copyright (c) Microsoft Corporation. All rights reserved.

Opened \\.\pipe\woo
Waiting to reconnect...
Connected to Windows XP 2600 x86 compatible target, ptr64 FALSE
Kernel Debugger connection established.
Windows XP Kernel Version 2600 (Service Pack 2) UP Free x86 compatible
Product: WinNt, suite: TerminalServer SingleUserTS
Built by: 2600.xpsp_sp2_rtm.040803-2158
Kernel base = 0x804d7000 PsLoadedModuleList = 0x8055ab20
Debug session time: Sat Sep 23 14:40:24.522 2006 (GMT-7)
System Uptime: 0 days 0:06:50.610
Break instruction exception - code 80000003 (first chance)
nt!DbgBreakPointWithStatus+0x4:
804e3b25 cc int 3
kd> .reload
Connected to Windows XP 2600 x86 compatible target, ptr64 FALSE
Loading Kernel Symbols
.......................................................
Loading User Symbols

Loading unloaded module list
...........
kd> !dbgstalk.dbgstalk -o -b c:\Uninformed\pluto.sys.bpl
[*] - Entering Stalker
[*] - Break Point List.....: c:\Uninformed\pluto.sys.bpl
[*] - Breakpoint Restore...: OFF
[*] - Register Enumerate...: ON
[*] - Kernel Stalking:.....: ON

current context:

eax=00000001 ebx=ffdff980 ecx=8055192c edx=000003f8 esi=00000000 edi=f4be2de0
eip=804e3b25 esp=80550830 ebp=80550840 iopl=0 nv up ei pl nz na po nc
cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00000202
nt!RtlpBreakWithStatusInstruction:
804e3b25 cc int 3

commands:

[m] module list [0-9] enter recorder modes
[x] stop recording [v] toggle verbosity
[q] quit/close


Once Debug Stalk is loaded, a list of commands is available to the user. A
breakdown of the command line options offered by Debug Stalk is as follows:


[m] module list
[0-9] enter recorder modes
[x] stop recording
[v] toggle verbosity
[q] quit/close


At this point, the fuzz tool needs to be executed to send random arbitrary data
to the device driver. While the fuzzer is running, Debug Stalk will print out
information to kd. Pressing 'g' at the command line prompt will resume
execution of the target machine. This invocation will look something like
this:


kd> g
[*] - Recorder Opened......: pluto.sys.0
[*] - Recorder Opened......: pluto.sys-regs.0
Modload: Processing breakpoints for module pluto.sys at f7a7f000
Modload: Done. 46 of 46 breakpoints were set.
0034c883 T:00000001 [bp] f7a83000 a10020a8f7 mov eax,dword ptr [pluto+0x3000 (f7a82000)]
0034ed70 T:00000001 [bp] f7a8300e 3bc1 cmp eax,ecx
0034eded T:00000001 [bp] f7a83012 a12810a8f7 mov eax,dword ptr [pluto+0x2028 (f7a81028)]
0034ee89 T:00000001 [bp] f7a8302b e9aed1ffff jmp pluto+0x11de (f7a801de)
0034ef16 T:00000001 [bp] f7a801de 55 push ebp
0034ef93 T:00000001 [bp] f7a80219 8b45fc mov eax,dword ptr [ebp-4]
0034f03f T:00000001 [bp] f7a80253 6844646b20 push 206B6444h
0034f0cb T:00000001 [bp] f7a802a2 b980000000 mov ecx,80h
0034f148 T:00000001 [bp] f7a802ab 5f pop edi
00359086 T:00000001 [bp] f7a8006a 8b4c2408 mov ecx,dword ptr [esp+8]
0035920c T:00000001 [bp] f7a800f6 833d0420a8f700 cmp dword ptr [pluto+0x3004 (f7a82004)],0
003592a9 T:00000001 [bp] f7a8010c 8b7760 mov esi,dword ptr [edi+60h]
00359345 T:00000001 [bp] f7a80114 8b4704 mov eax,dword ptr [edi+4]
003593e1 T:00000001 [bp] f7a80122 6a10 push 10h
0035945e T:00000001 [bp] f7a80133 85c0 test eax,eax
003594eb T:00000001 [bp] f7a80147 ff7604 push dword ptr [esi+4]
00359587 T:00000001 [bp] f7a80176 8bcf mov ecx,edi
00359614 T:00000001 [bp] f7a80182 5f pop edi
0035ac5b T:00000001 [bp] f7a8002e 55 push ebp

current context:

eax=00000001 ebx=0000c271 ecx=8055192c edx=000003f8 esi=00000001 edi=291f0c30
eip=804e3b25 esp=80550830 ebp=80550840 iopl=0 nv up ei pl nz na po nc
cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00000202
nt!RtlpBreakWithStatusInstruction:
804e3b25 cc int 3


commands:

[m] module list [0-9] enter recorder modes
[x] stop recording [v] toggle verbosity
[q] quit/close

kd> q
[*] - Exiting Stalker
q


Debug Stalk has finished Stalking the points in the driver allowed by the
fuzzer. Files named "pluto.sys.0," "pluto.sys-regs.0 (optional)," have been
saved to the current working directory.


5.5) Analyzing the output

Pedram has developed a set of Python scripts to support the .bpl and recorder
output file, such as adding register metadata to the graph, filtering generated
breakpoint lists, additional GDE support for difficult graphs, combining
multi-function graphs into a conglomerate graph, highlighting interesting
blocks, importing back into the IDA changes made directly to the graph, adding
function offsets to breakpoint addresses and optionally rebasing the recording
addresses, and much more. Pedram provides detailed descriptions and usage of
his python scripts in his manual. The Python scripts used for formatting the
.gml files (for block based coverage) are psprocessrecording and
psviewrecordingfuncs. The psprocessrecording script is executed first on the
pluto.sys.0 which will produce another file called
pluto.sys.0.BadFuzz-processed. The psviewrecordingfuncs is executed on the
pluto.sys.0.BadFuzz-processed file to produce the file called BadFuzz.gml,
which is the chosen name for the initial testing technique. More information on
Pedram's Python scripts, reference the Process Stalking Manual. Opening the
resulting .gml file will enable us to view the following graph.

Executed blocks are available in pink, unexecuted blocks are shown as grey,
paths of execution are green lines, and unexecuted paths are red lines. At this
point it is important to note that the code block starting at address 00011169
does not get executed. This is detrimental to our testing process because it
appears that fuzzer supplied data is passed to it and it does not appear to get
executed. Based on this evidence, we can conclude that a readjustment of our
testing methodologies needs to be put in place so that we can hit that
unexecuted block.

Analysis indicates that the device driver does not execute block 00011169
because a comparison is made in the block at address 00011147 which reveals
that [eax] does not match a specified value. Since eax is pointing to the
fuzzer supplied data, we should be able to adjust the fuzzer to meet the
requirement of the 00011161 cmp dword ptr [eax], 0DEADBEEFh instruction, which
will allow us to get into block 00011169. BetterFuzz.exe was improved to do
complete the previous description.


5.5.1) Part II

Determining that the previous testing methodology is not effective, a
re-engineering of the test case has been implemented and re-testing the driver
to hit the missed block can now be accomplished. Following the steps provided
in Part I, the driver is loaded into the Virtual PC, kd is attached to the
driver process, and Debug Stalk has been loaded into kd and has been invoked to
run by using the 'g' command. The entire process is the same except that when
the new fuzz test is invoked, different output is printed to kd:

kd> g
[*] - Recorder Opened......: pluto.sys.0
[*] - Recorder Opened......: pluto.sys-regs.0
Modload: Processing breakpoints for module pluto.sys at f7a27000
Modload: Done. 46 of 46 breakpoints were set.
004047a0 T:00000001 [bp] f7a2b000 a100a0a2f7 mov eax,dword ptr [pluto+0x3000 (f7a2a000)]
004052bc T:00000001 [bp] f7a2b00e 3bc1 cmp eax,ecx
00405339 T:00000001 [bp] f7a2b012 a12890a2f7 mov eax,dword ptr [pluto+0x2028 (f7a29028)]
004053e5 T:00000001 [bp] f7a2b02b e9aed1ffff jmp pluto+0x11de (f7a281de)
00405462 T:00000001 [bp] f7a281de 55 push ebp
004054ee T:00000001 [bp] f7a28219 8b45fc mov eax,dword ptr [ebp-4]
0040558b T:00000001 [bp] f7a28253 6844646b20 push 206B6444h
00405617 T:00000001 [bp] f7a282a2 b980000000 mov ecx,80h
00405694 T:00000001 [bp] f7a282ab 5f pop edi
00406ccc T:00000001 [bp] f7a2806a 8b4c2408 mov ecx,dword ptr [esp+8]
00406e04 T:00000001 [bp] f7a280f6 833d04a0a2f700 cmp dword ptr [pluto+0x3004 (f7a2a004)],0
00406eb0 T:00000001 [bp] f7a2810c 8b7760 mov esi,dword ptr [edi+60h]
00406f4c T:00000001 [bp] f7a28114 8b4704 mov eax,dword ptr [edi+4]
00406ff8 T:00000001 [bp] f7a28122 6a10 push 10h
00407075 T:00000001 [bp] f7a28133 85c0 test eax,eax
00407102 T:00000001 [bp] f7a28147 ff7604 push dword ptr [esi+4]
004071ae T:00000001 [bp] f7a28169 6a04 push 4

current context:

eax=00000003 ebx=00000000 ecx=8050589d edx=0000006a esi=00000000 edi=f1499052
eip=804e3b25 esp=f3cbe720 ebp=f3cbe768 iopl=0 nv up ei pl zr na pe nc
cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00000246
nt!RtlpBreakWithStatusInstruction:
804e3b25 cc int 3

commands:

[m] module list [0-9] enter recorder modes
[x] stop recording [v] toggle verbosity
[q] quit/close

kd> k
ChildEBP RetAddr
f3c1971c 805328e7 nt!RtlpBreakWithStatusInstruction
f3c19768 805333be nt!KiBugCheckDebugBreak+0x19
f3c19b48 805339ae nt!KeBugCheck2+0x574
f3c19b68 805246fb nt!KeBugCheckEx+0x1b
f3c19bb4 804e1ff1 nt!MmAccessFault+0x6f5
f3c19bb4 804da1ee nt!KiTrap0E+0xcc
*** ERROR: Module load completed but symbols could not be loaded for pluto.sys
f3c19c48 f79f0173 nt!memmove+0x72
WARNING: Stack unwind information not available. Following frames may be wrong.
f3c19c84 8057a510 pluto+0x1173
f3c19d38 804df06b nt!NtWriteFile+0x602
f3c19d38 7c90eb94 nt!KiFastCallEntry+0xf8
0006fec0 7c90e9ff ntdll!KiFastSystemCallRet
0006fec4 7c81100e ntdll!ZwWriteFile+0xc
0006ff24 01001276 kernel32!WriteFile+0xf7
0006ff44 010013a7 betterfuzz_c!main+0xa4
0006ffc0 7c816d4f betterfuzz_c!mainCRTStartup+0x12f
0006fff0 00000000 kernel32!BaseProcessStart+0x23

current context:

eax=00000003 ebx=00000000 ecx=8050589d edx=0000006a esi=00000000 edi=f1499052
eip=804e3b25 esp=f3c19720 ebp=f3c19768 iopl=0 nv up ei pl zr na pe nc
cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00000246
nt!RtlpBreakWithStatusInstruction:
804e3b25 cc int 3

commands:

[m] module list [0-9] enter recorder modes
[x] stop recording [v] toggle verbosity
[q] quit/close

kd> q
[*] - Exiting Stalker
q

C:\Uninformed>

Generating the .gml file allows the tester to view the new execution path. In
this case the block at address 00011169 is executed. All subsequent blocks
underneath it are not executed because the driver BugChecks inside of this
newly hit block indicating a bug of some sort. Command 'k' in kd produces the
stack unwind information and we can see that a BugCheck was initiated for an
Access Violation that occurs inside of pluto.sys.


5.6) Part III

Analysis of the graph BadFuzz.gml generated in Part I indicated that the
testing methods used were not effective enough to exhibit optimal code coverage
of the device driver in question. Part II implemented an improved test case
based on the coverage analysis used in Part I. Graph BetterFuzz.gml allowed
test executers to view the improved testing methods to ensure that the missed
block was reached. This process revealed a fault in block 00011169 which would
have otherwise remained undetected without code coverage analysis.


6) Conclusion and Future Work

This paper illustrated an improved testing technique by taking advantage of
code coverage methods using basic graph theory. The author would like to
reiterate that the driver and fuzz tool used in this paper were simple examples
to illustrate the effectiveness of code coverage practices.

Finally, more research and experimentation are needed to fully implement these
theorems. The question remains on how to integrate a full code coverage
analysis tool and a fuzzing tool. Much work has been done on code coverage
techniques and their implementations. For example, the paper entitled
Cryptographic Verification of Test Coverage Claims, Devanbu, et al presents
protocols for coverage testing methods such as verifying coverage with and
without source code, with just the binary which can utilize both block and
branch testing (e0178[1].PDF). A tool to automate the espousal of code coverage
and fuzz technologies needs to be implemented so that the two technologies may
work together without manual investigation. Further research may include more
sophisticated coverage techniques using graph theory such as super blocks,
denominators, and applying weights to frequently used loops, paths and edges.
CFGs may also benefit from Bayesian networks which are a directed cyclic graph
of nodes represented as variables including distribution probability for these
variables given the values of its parents. In other words, the Bayesian theory
may be helpful for deterministic prediction of code execution which can in turn
lead to more intelligent fuzzing. In closing, the author extends the hope that
methods and methodologies shared herein can offer other ideas to researchers.


A. References

Devanbu, T (2000). Cryptographic Verification of Test
Coverage Claims. IEEE. 2, 178-192.

← previous
next →
loading
sending ...
New to Neperos ? Sign Up for free
download Neperos App from Google Play
install Neperos as PWA

Let's discover also

Recent Articles

Recent Comments

Neperos cookies
This website uses cookies to store your preferences and improve the service. Cookies authorization will allow me and / or my partners to process personal data such as browsing behaviour.

By pressing OK you agree to the Terms of Service and acknowledge the Privacy Policy

By pressing REJECT you will be able to continue to use Neperos (like read articles or write comments) but some important cookies will not be set. This may affect certain features and functions of the platform.
OK
REJECT